Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2023, Vol. 17 Issue (2): 25   https://doi.org/10.1007/s11783-023-1625-0
  本期目录
Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities
Hanqing Fan1, Yuxuan Huang1, Ngai Yin Yip1,2()
1. Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027-6623, USA
2. Columbia Water Center, Columbia University, New York, NY 10027-6623, USA
 全文: PDF(4218 KB)   HTML
Abstract

● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.

● Ion/molecule selectivities of ion/solvent and ion/uncharged solute are reviewed.

● Approaches to advance the selectivities through sorption and migration are analyzed.

● The permeability-selectivity tradeoff appears to be pervasive.

● Ion/molecule selectivities are comparatively underdeveloped and poorly understood.

Ion-exchange membranes (IEMs) are utilized in numerous established, emergent, and emerging applications for water, energy, and the environment. This article reviews the five different types of IEM selectivity, namely charge, valence, specific ion, ion/solvent, and ion/uncharged solute selectivities. Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed. Because of the underlying principles governing transport, efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion. Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies, including bioelectrochemical systems, hypersaline electrodialysis desalination, fuel cells, and redox flow batteries, but the ion/solvent and ion/uncharged solute selectivities are relatively understudied, compared to the ion/ion selectivities. Deepening fundamental understanding of the transport phenomena, specifically the factors underpinning structure-property-performance relationships, will be vital to guide the informed development of more selective IEMs. Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff. Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water, energy, and environmental challenges.

Key wordsIon-exchange membranes    Selectivity    Separations
收稿日期: 2022-06-21      出版日期: 2022-11-07
Corresponding Author(s): Ngai Yin Yip   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2023, 17(2): 25.
Hanqing Fan, Yuxuan Huang, Ngai Yin Yip. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities. Front. Environ. Sci. Eng., 2023, 17(2): 25.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-023-1625-0
https://academic.hep.com.cn/fese/CN/Y2023/V17/I2/25
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Acronyms
AEM anion exchange membrane
CEM cation exchange membrane
IEM ion-exchange membrane
NASICON Na super ionic conductor
Symbols
c ion concentration
Δcm concentration difference across membrane
e elementary charge
fw water volume fraction
kB Boltzmann constant
Δl membrane thickness
t transport number
u mobility
v velocity of water in membrane
z ion valence
A osmotic water permeability coefficient
Bw characteristic parameter for water transport
Bs characteristic parameter for solute transport
D diffusivity
ΔEi binding free energy
F Faraday constant
ΔGhyd Gibbs hydration energy
J flux
K sorption coefficient
ΔP hydrostatic pressure difference across membrane
R gas constant
S separation selectivity
T absolute temperature
γ activity coefficient
ε permittivity
κ ionic conductivity
Δπ osmotic pressure difference across membrane
φ electric potential
ΔφD Donnan potential
Δφm electric potential difference within membrane
Superscripts and subscripts
ct counterion
co co-ion
eo electro-osmosis
fix membrane fixed charges
i species i
j species j
m membrane phase
os osmosis
s bulk solution phase
w water
1 upstream solution-membrane interface
2 downstream solution-membrane interface
I monovalent counterion
II divalent counterion
III trivalent counterion
  
  
1 M Abdollahzadeh, M Chai, E Hosseini, M Zakertabrizi, M Mohammad, H Ahmadi, J Hou, S Lim, A Habibnejad Korayem, V Chen, M Asadnia, A Razmjou. (2022). Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Advanced Materials, 34(9): 2107878
https://doi.org/10.1002/adma.202107878
2 J Abraham, K S Vasu, C D Williams, K Gopinadhan, Y Su, C T Cherian, J Dix, E Prestat, S J Haigh, I V Grigorieva, P Carbone, A K Geim, R R Nair. (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12(6): 546–550
https://doi.org/10.1038/nnano.2017.21
3 R abu-Rjal, V Chinaryan, M Z Bazant, I Rubinstein, B Zaltzman. (2014). Effect of concentration polarization on permselectivity. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 89(1): 012302
https://doi.org/10.1103/PhysRevE.89.012302
4 E T Acar, S F Buchsbaum, C Combs, F Fornasiero, Z S Siwy. (2019). Biomimetic potassium-selective nanopores. Science Advances, 5(2): eaav2568
https://doi.org/10.1126/sciadv.aav2568
5 Y D Ahdab, D Rehman, J H Lienhard. (2020). Brackish water desalination for greenhouses: Improving groundwater quality for irrigation using monovalent selective electrodialysis reversal. Journal of Membrane Science, 610: 118072
https://doi.org/10.1016/j.memsci.2020.118072
6 Y D Ahdab, D Rehman, G Schucking, M Barbosa, J H Lienhard. (2021). Treating irrigation water using high-performance membranes for monovalent selective electrodialysis. ACS ES&T Water, 1(1): 117–124
https://doi.org/10.1021/acsestwater.0c00012
7 H Ahmadi, M Zakertabrizi, E Hosseini, W Cha-Umpong, M Abdollahzadeh, A H Korayem, V Chen, H K Shon, M Asadnia, A Razmjou. (2022). Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient lithium sieving. Desalination, 538: 115888
https://doi.org/10.1016/j.desal.2022.115888
8 M Ahmed, I Dincer. (2011). A review on methanol crossover in direct methanol fuel cells: challenges and achievements. International Journal of Energy Research, 35(14): 1213–1228
https://doi.org/10.1002/er.1889
9 G Alvial-Hein, H Mahandra, A Ghahreman. (2021). Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: a review. Journal of Cleaner Production, 297: 126592
https://doi.org/10.1016/j.jclepro.2021.126592
10 H Amiri, M Khosravi, M Ejeian, A Razmjou. (2021). Designing ion-selective membranes for vanadium redox flow batteries. Advanced Materials Technologies, 6(10): 2001308
https://doi.org/10.1002/admt.202001308
11 B Amsden. (1998). Solute diffusion within hydrogels: mechanisms and models. Macromolecules, 31(23): 8382–8395
https://doi.org/10.1021/ma980765f
12 S S An, J Liu, J H Wang, M C Wang, Z Y Ji, S S Qi, J S Yuan. (2019). Synthesis and characterization of a plat sheet potassium ion sieve membrane and its performances for separation potassium. Separation and Purification Technology, 212: 834–842
https://doi.org/10.1016/j.seppur.2018.11.079
13 R W Baker (2012). Membrane Technology and Applications. Chichester: John Wiley & Sons
14 P Bakonyi, L Kook, G Kumar, G Toth, T Rozsenberszki, D D Nguyen, S W Chang, G Y Zhen, K Belafi-Bako, N Nemestothy. (2018). Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: a comprehensive update on recent progress and future prospects. Journal of Membrane Science, 564: 508–522
https://doi.org/10.1016/j.memsci.2018.07.051
15 M Barboiu. (2018). Encapsulation versus self-aggregation toward highly selective artificial K+ channels. Accounts of Chemical Research, 51(11): 2711–2718
https://doi.org/10.1021/acs.accounts.8b00311
16 M Barboiu, Y Le Duc, A Gilles, P A Cazade, M Michau, Y M Legrand, A Van Der Lee, B Coasne, P Parvizi, J Post, T Fyles. (2014). An artificial primitive mimic of the Gramicidin: a channel. Nature Communications, 5: 4142
https://doi.org/10.1038/ncomms5142
17 A J Bard, L R Faulkner (2001). Electrochemical Methods: Fundamentals and Applications (2nd ed.). New York: Wiley
18 J W Barnett, C R Bilchak, Y W Wang, B C Benicewicz, L A Murdock, T Bereau, S K Kumar. (2020). Designing exceptional gas-separation polymer membranes using machine learning. Science Advances, 6(20): eaaz4301
https://doi.org/10.1126/sciadv.aaz4301
19 D Bedrov, G D Smith, H Davande, L Li. (2008). Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. Journal of Physical Chemistry B, 112(7): 2078–2084
https://doi.org/10.1021/jp075149c
20 Ben-David A, Bason S, Jopp J, Oren Y, Freger V (2006a). Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection. Journal of Membrane Science, 281(1–2): 480–490
21 A Ben-David, Y Oren, V Freger. (2006b). Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes. Environmental Science & Technology, 40(22): 7023–7028
https://doi.org/10.1021/es0609912
22 Berezina N P, Kononenko N A, Dyomina O A, Gnusin N P (2008). Characterization of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Science, 139(1–2): 3–28
23 B J BraggJ E CaseyJ B Trout (1994). Primary Battery Design and Safety Guidelines Handbook. Houston, Texas: NASA Reference Publication
24 Cath T Y, Childress A E, Elimelech M (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2): 70–87
25 S Chaudhury, A Bhattacharyya, A Goswami. (2014). Electrodriven ion transport through crown ether-Nafion composite membrane: enhanced selectivity of Cs+ over Na+ by ion gating at the surface. Industrial & Engineering Chemistry Research, 53(21): 8804–8809
https://doi.org/10.1021/ie500934v
26 G Q Chen, K Wei, A Hassanvand, B D Freeman, S E Kentish. (2020). Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Research, 175: 115681
https://doi.org/10.1016/j.watres.2020.115681
27 L Chen, R Y Zhang, P He, Q J Kang, Y L He, W Q Tao. (2018). Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources, 400: 114–125
https://doi.org/10.1016/j.jpowsour.2018.07.099
28 S Chen, H Luo, Y Hou, G Liu, R Zhang, B Qin. (2015). Comparison of the removal of monovalent and divalent cations in the microbial desalination cell. Frontiers of Environmental Science & Engineering, 9(2): 317–323
29 X Chen, C Boo, N Y Yip. (2021). Influence of solute molecular diameter on permeability-selectivity tradeoff of thin-film composite polyamide membranes in aqueous separations. Water Research, 201: 117311
https://doi.org/10.1016/j.watres.2021.117311
30 S Chu (2011). Critical Materials Strategy. U.S. Department of Energy, Darby: DIANE publishing
31 S B ClarkM BuchananB Wilmarth (2016). Basic research needs for environmental management. Richland, WA (USA): Pacific Northwest National Lab. (PNNL)
32 S Collong, R Kouta. (2015). Fault tree analysis of proton exchange membrane fuel cell system safety. International Journal of Hydrogen Energy, 40(25): 8248–8260
https://doi.org/10.1016/j.ijhydene.2015.04.101
33 Cretin M, Fabry P (1997). Detection and selectivity properties of Li+-ion-selective electrodes based on NASICON-type ceramics. Analytica Chimica Acta, 354(1–3): 291–299
34 G P T CruzP D GaspilloK Takahashi (2000). Selective transport of Li-Na and Li-K binary systems across a cation exchange membrane under an electric field. Separation and Purification Technology, 19(1–2): 21–26
35 E L CusslerR ArisA Bhown (1989). On the limits of facilitated diffusion. Journal of Membrane Science, 43(2–3): 149–164
36 R M Darling, A Z Weber, M C Tucker, M L Perry. (2016). The influence of electric field on crossover in redox-flow batteries. Journal of the Electrochemical Society, 163(1): A5014–A5022
https://doi.org/10.1149/2.0031601jes
37 R De MarcoG ClarkeB Pejcic (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19(19–20): 1987–2001
38 H N Deng, S J Zhao, Q Q Meng, W Zhang, B S Hu. (2014). A novel surface ion-imprinted cation-exchange membrane for selective separation of copper ion. Industrial & Engineering Chemistry Research, 53(39): 15230–15236
https://doi.org/10.1021/ie502612m
39 R Devanathan, A Venkatnathan, M Dupuis. (2007). Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. Journal of Physical Chemistry B, 111(28): 8069–8079
https://doi.org/10.1021/jp0726992
40 S M Dischinger, S Gupta, B M Carter, D J Miller. (2020). Transport of neutral and charged solutes in imidazolium-functionalized poly(phenylene oxide) membranes for artificial photosynthesis. Industrial & Engineering Chemistry Research, 59(12): 5257–5266
https://doi.org/10.1021/acs.iecr.9b05628
41 P Długołęcki, B Anet, S J Metz, K Nijmeijer, M Wessling. (2010a). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1): 163–171
https://doi.org/10.1016/j.memsci.2009.09.033
42 P Długołęcki K NymeijerS MetzM Wessling (2008). Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 319(1–2): 214–222
43 P Długołęcki P OgonowskiS J MetzM SaakesK NijmeijerM Wessling (2010b). On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1–2): 369–379
44 L Dresner. (1972). Stability of the extended Nernst-Planck equations in the description of hyperfiltration through ion-exchange membranes. Journal of Physical Chemistry, 76(16): 2256–2267
https://doi.org/10.1021/j100660a015
45 L Dresner. (1974). Ionic transport through porous ion-exchange membranes in hyperfiltration and piezodialysis. Desalination, 15(1): 109–125
https://doi.org/10.1016/S0011-9164(00)82065-2
46 R M DuChanois, M Heiranian, J Yang, C J Porter, Q L Li, X Zhang, R Verduzco, M Elimelech. (2022). Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 8(9): eabm9436
https://doi.org/10.1126/sciadv.abm9436
47 R M DuChanois, C J Porter, C Violet, R Verduzco, M Elimelech. (2021). Membrane materials for selective ion separations at the water-energy nexus. Advanced Materials, 33(38): 2101312
https://doi.org/10.1002/adma.202101312
48 J Elser, E Bennett. (2011). A broken biogeochemical cycle. Nature, 478(7367): 29–31
https://doi.org/10.1038/478029a
49 R Epsztein, R M DuChanois, C L Ritt, A Noy, M Elimelech. (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436
https://doi.org/10.1038/s41565-020-0713-6
50 J W Erisman, M A Sutton, J Galloway, Z Klimont, W Winiwarter. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10): 636–639
https://doi.org/10.1038/ngeo325
51 M Ersöz. (1995). Diffusion and selective transport of alkali cations on cation-exchange membrane. Separation Science and Technology, 30(18): 3523–3533
https://doi.org/10.1080/01496399508015133
52 H Fan, Y Huang, I H Billinge, S M Bannon, G M Geise, N Y Yip. (2022). Counterion mobility in ion-exchange membranes: spatial effect and valency-dependent electrostatic interaction. ACS ES&T Engineering, 2: 1274–1286
53 H Fan, Y Huang, N Y Yip. (2020). Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites. Journal of Membrane Science, 610: 118259
https://doi.org/10.1016/j.memsci.2020.118259
54 H Fan, N Y Yip. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573: 668–681
https://doi.org/10.1016/j.memsci.2018.11.045
55 M Fetanat, M Keshtiara, R Keyikoglu, A Khataee, R Daiyan, A Razmjou. (2021). Machine learning for design of thin-film nanocomposite membranes. Separation and Purification Technology, 270: 118383
https://doi.org/10.1016/j.seppur.2021.118383
56 A D Fonseca, J G Crespo, J S Almeida, M A Reis. (2000). Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environmental Science & Technology, 34(8): 1557–1562
https://doi.org/10.1021/es9910762
57 M S FountainD E KurathG J SevignyA P PoloskiJ PendletonS BalagopalM QuistD Clay (2008). Caustic recycle from Hanford tank waste using NaSICON ceramic membranes. Separation Science and Technology, 43(9–10): 2321–2342
58 B D Freeman. (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380
https://doi.org/10.1021/ma9814548
59 V Freger. (2020). Ion partitioning and permeation in charged low-T* membranes. Advances in Colloid and Interface Science, 277: 102107
https://doi.org/10.1016/j.cis.2020.102107
60 L Ge, B Wu, D B Yu, A N Mondal, L X Hou, N U Afsar, Q H Li, T T Xu, J B Miao, T W Xu. (2017). Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives. Chinese Journal of Chemical Engineering, 25(11): 1606–1615
https://doi.org/10.1016/j.cjche.2017.06.002
61 G M Geise. (2020). Experimental characterization of polymeric membranes for selective ion transport. Current Opinion in Chemical Engineering, 28: 36–42
https://doi.org/10.1016/j.coche.2020.01.002
62 G M Geise, A J Curtis, M C Hatzell, M A Hickner, B E Logan. (2014a). Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters, 1(1): 36–39
https://doi.org/10.1021/ez4000719
63 G M Geise, M A Hickner, B E Logan. (2013). Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Applied Materials & Interfaces, 5(20): 10294–10301
https://doi.org/10.1021/am403207w
64 G M GeiseH B ParkA C SagleB D FreemanJ E Mcgrath (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of Membrane Science, 369(1–2): 130–138
65 G M Geise, D R Paul, B D Freeman. (2014b). Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 39(1): 1–42
https://doi.org/10.1016/j.progpolymsci.2013.07.001
66 A Gilles, M Barboiu. (2016). Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 138(1): 426–432
https://doi.org/10.1021/jacs.5b11743
67 A Goswami, A Acharya, A K Pandey. (2001). Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. Journal of Physical Chemistry B, 105(38): 9196–9201
https://doi.org/10.1021/jp010529y
68 E Gouaux, R MacKinnon. (2005). Principles of selective ion transport in channels and pumps. Science, 310(5753): 1461–1465
https://doi.org/10.1126/science.1113666
69 M Grzegorzek, K Majewska-Nowak, A E Ahmed. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Science of the Total Environment, 722: 137681
https://doi.org/10.1016/j.scitotenv.2020.137681
70 E Güler, R Elizen, D A Vermaas, M Saakes, K Nijmeijer. (2013). Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 446: 266–276
https://doi.org/10.1016/j.memsci.2013.06.045
71 E Güler, Y L Zhang, M Saakes, K Nijmeijer. (2012). Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem, 5(11): 2262–2270
https://doi.org/10.1002/cssc.201200298
72 Y Guo, Y L Ying, Y Y Mao, X S Peng, B L Chen. (2016). Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 55(48): 15120–15124
https://doi.org/10.1002/anie.201607329
73 L Han, S Galier, H Roux-De Balmann. (2015). Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination, 373: 38–46
https://doi.org/10.1016/j.desal.2015.06.023
74 L Han, S Galier, H Roux-De Balmann. (2016). Transfer of neutral organic solutes during desalination by electrodialysis: influence of the salt composition. Journal of Membrane Science, 511: 207–218
https://doi.org/10.1016/j.memsci.2016.03.053
75 F Harnisch, S Wirth, U Schroder. (2009). Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry Communications, 11(11): 2253–2256
https://doi.org/10.1016/j.elecom.2009.10.002
76 A HeintzE WiedemannJ Ziegler (1997). Ion exchange diffusion in electromembranes and its description using the Maxwell-Stefan formalism. Journal of Membrane Science, 137(1–2): 121–132
77 A Heinzel, V M Barragan. (1999). A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 84(1): 70–74
https://doi.org/10.1016/S0378-7753(99)00302-X
78 F Helfferich (1995). Ion Exchange. Mineola: Dover Publications
79 Z Huang, J Zhu, R J Qiu, J J Ruan, R L Qiu. (2019). A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. Journal of Cleaner Production, 229: 1148–1157
https://doi.org/10.1016/j.jclepro.2019.05.049
80 A F Ismail, T Matsuura. (2018). Progress in transport theory and characterization method of Reverse Osmosis (RO) membrane in past fifty years. Desalination, 434: 2–11
https://doi.org/10.1016/j.desal.2017.09.028
81 M Jarin, Z Dou, H Gao, Y Chen, X Xie. (2023). Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water. Frontiers of Environmental Science & Engineering, 17(2): 16
82 H Jaroszek, P Dydo. (2016). Ion-exchange membranes in chemical synthesis: a review. Open Chemistry, 14(1): 1–19
https://doi.org/10.1515/chem-2016-0002
83 J Kamcev (2016). Ion sorption and transport in ion exchange membranes: importance of counter-ion condensation. Dissertation for the Doctoral Degree. Austin: The University of Texas at Austin
84 J Kamcev. (2021). Reformulating the permselectivity-conductivity tradeoff relation in ion-exchange membranes. Journal of Polymer Science, 59(21): 2510–2520
https://doi.org/10.1002/pol.20210304
85 J Kamcev, D R Paul, G S Manning, B D Freeman. (2017). Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes. ACS Applied Materials & Interfaces, 9(4): 4044–4056
https://doi.org/10.1021/acsami.6b14902
86 J Kamcev, D R Paul, G S Manning, B D Freeman. (2018a). Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules, 51(15): 5519–5529
https://doi.org/10.1021/acs.macromol.8b00645
87 J Kamcev, R Sujanani, E S Jang, N Yan, N Moe, D R Paul, B D Freeman. (2018b). Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 547: 123–133
https://doi.org/10.1016/j.memsci.2017.10.024
88 D M KananiW H FissellS RoyA DubnishevaA FleischmanA L Zydney (2010). Permeability-selectivity analysis for ultrafiltration: Effect of pore geometry. Journal of Membrane Science, 349(1–2): 405–410
89 M A Karal, M K Islam, Z B Mahbub. (2020). Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. European Biophysics Journal, 49(1): 59–69
https://doi.org/10.1007/s00249-019-01412-0
90 S Kato, K Nagahama, H Asai. (1992). Permeation rates of aqueous alcohol-solutions in pervaporation through Nafion membranes. Journal of Membrane Science, 72(1): 31–41
https://doi.org/10.1016/0376-7388(92)80054-N
91 J Kim, C Tsouris, R T Mayes, Y Oyola, T Saito, C J Janke, S Dai, E Schneider, D Sachde. (2013). Recovery of uranium from seawater: a review of current status and future research needs. Separation Science and Technology, 48(3): 367–387
https://doi.org/10.1080/01496395.2012.712599
92 J M Kim, B S Beckingham. (2021). Transport and co-transport of carboxylate ions and alcohols in cation exchange membranes. Journal of Polymer Science, 59(21): 2545–2558
https://doi.org/10.1002/pol.20210383
93 J M Kim, Y H Lin, B Hunter, B S Beckingham. (2021a). Transport and co-transport of carboxylate ions and ethanol in anion exchange membranes. Polymers, 13(17): 2885
https://doi.org/10.3390/polym13172885
94 J M Kim, A Mazumder, J Li, Z H Jiang, B S Beckingham. (2022a). Impact of PEGMA on transport and co-transport of methanol and acetate in PEGDA-AMPS cation exchange membranes. Journal of Membrane Science, 642: 119950
https://doi.org/10.1016/j.memsci.2021.119950
95 J R Kim, S H Jung, J M Regan, B E Logan. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13): 2568–2577
https://doi.org/10.1016/j.biortech.2006.09.036
96 N Kim, S Jeong, W Go, Y Kim. (2022b). A Na+ ion-selective desalination system utilizing a NASICON ceramic membrane. Water Research, 215: 118250
https://doi.org/10.1016/j.watres.2022.118250
97 S Kim, B T D Nguyen, H Ko, M Kim, K Kim, S Nam, J F Kim. (2021b). Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes. International Journal of Hydrogen Energy, 46(29): 15135–15144
https://doi.org/10.1016/j.ijhydene.2021.02.040
98 Y Kim, W S Walker, D F Lawler. (2012). Competitive separation of di- vs. mono-valent cations in electrodialysis: Effects of the boundary layer properties. Water Research, 46(7): 2042–2056
https://doi.org/10.1016/j.watres.2012.01.004
99 R Kingsbury, J Wang, O Coronell. (2020). Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. Journal of Membrane Science, 604: 117998
https://doi.org/10.1016/j.memsci.2020.117998
100 R S Kingsbury, O Coronell. (2021). Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and Manning’s counter-ion condensation theory. Journal of Membrane Science, 620: 118411
https://doi.org/10.1016/j.memsci.2020.118411
101 D Kitto, J Kamcev. (2022). Manning condensation in ion exchange membranes: a review on ion partitioning and diffusion models. Journal of Polymer Science, 2022: 1–45
https://doi.org/10.1002/pol.20210810
102 P Knauth, L Pasquini, R Narducci, E Sgreccia, R A Becerra-Arciniegas, M L Di Vona. (2021). Effective ion mobility in anion exchange ionomers: relations with hydration, porosity, tortuosity, and percolation. Journal of Membrane Science, 617: 118622
https://doi.org/10.1016/j.memsci.2020.118622
103 N M Kocherginsky, Q Yang, L Seelam. (2007). Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53(2): 171–177
https://doi.org/10.1016/j.seppur.2006.06.022
104 D Y Koh, B A Mccool, H W Deckman, R P Lively. (2016). Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science, 353(6301): 804–807
https://doi.org/10.1126/science.aaf1343
105 L Kong, E Palacios, X Guan, M Shen, X Liu. (2022). Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes. Journal of Membrane Science, 658: 120645
https://doi.org/10.1016/j.memsci.2022.120645
106 K D Kreuer. (2014). Ion conducting membranes for fuel cells and other electrochemical devices. Chemistry of Materials, 26(1): 361–380
https://doi.org/10.1021/cm402742u
107 K D Kreuer, A Münchinger. (2021). Fast and selective ionic transport: from ion-conducting channels to ion exchange membranes for flow batteries. Annual Review of Materials Research, 51: 21–46
https://doi.org/10.1146/annurev-matsci-080619-010139
108 K D Kreuer, S J Paddison, E Spohr, M Schuster. (2004). Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews, 104(10): 4637–4678
https://doi.org/10.1021/cr020715f
109 M Krödel, B M Carter, D Rall, J Lohaus, M Wessling, D J Miller. (2020). Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Applied Materials & Interfaces, 12(10): 12030–12042
https://doi.org/10.1021/acsami.9b21415
110 N Lakshminarayanaiah. (1965). Transport phenomena in artificial membranes. Chemical Reviews, 65(5): 491–565
https://doi.org/10.1021/cr60237a001
111 C Y Li, H Chen, Q S Chen, H Shi, X H Yang, K M Wang, J B Liu. (2020). Lipophilic G-quadruplex isomers as biomimetic ion channels for conformation-dependent selective transmembrane transport. Analytical Chemistry, 92(14): 10169–10176
https://doi.org/10.1021/acs.analchem.0c02222
112 H Li, Y H Tang, Z W Wang, Z Shi, S H Wu, D T Song, J L Zhang, K Fatih, J J Zhang, H J Wang, Z S Liu, R Abouatallah, A Mazza. (2008). A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 178(1): 103–117
https://doi.org/10.1016/j.jpowsour.2007.12.068
113 W W Li, G P Sheng, X W Liu, H Q Yu. (2011). Recent advances in the separators for microbial fuel cells. Bioresource Technology, 102(1): 244–252
https://doi.org/10.1016/j.biortech.2010.03.090
114 W W Li, H Q Yu, B E Rittmann. (2015). Chemistry: reuse water pollutants. Nature, 528(7580): 29–31
https://doi.org/10.1038/528029a
115 X Y Li, M R Hill, H T Wang, H C Zhang. (2021). Metal-organic framework-based ion-selective membranes. Advanced Materials Technologies, 6(10): 2000790
https://doi.org/10.1002/admt.202000790
116 F Q Liu, G Q Lu, C Y Wang. (2006). Low crossover of methanol and water through thin membranes in direct methanol fuel cells. Journal of the Electrochemical Society, 153(3): A543–A553
https://doi.org/10.1149/1.2161636
117 H Liu, Q H She. (2022). Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. Journal of Membrane Science, 650: 120398
https://doi.org/10.1016/j.memsci.2022.120398
118 Y C Liu, L H Yeh, M J Zheng, K C W Wu. (2021). Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Science Advances, 7(10): eabe9924
https://doi.org/10.1126/sciadv.abe9924
119 H X Luo, W A S Agata, G M Geise. (2020). Connecting the ion separation factor to the sorption and diffusion selectivity of ion exchange membranes. Industrial & Engineering Chemistry Research, 59(32): 14189–14206
https://doi.org/10.1021/acs.iecr.0c02457
120 T Luo, S Abdu, M Wessling. (2018). Selectivity of ion exchange membranes: a review. Journal of Membrane Science, 555: 429–454
https://doi.org/10.1016/j.memsci.2018.03.051
121 P Marchetti, M F Jimenez Solomon, G Szekely, A G Livingston. (2014). Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 114(21): 10735–10806
https://doi.org/10.1021/cr500006j
122 P Marchetti, A G Livingston (2015). Predictive membrane transport models for organic solvent nanofiltration: How complex do we need to be? Journal of Membrane Science, 476: 530–553
123 C T MatosR FortunatoS VelizarovM A M ReisJ G (2008) Crespo. Removal of mono-valent oxyanions from water in an ion exchange membrane bioreactor: Influence of membrane permselectivity. Water Research, 42(6-7): 1785–1795
124 C T Matos, S Velizarov, J G Crespo, M A M Reis. (2006). Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 40(2): 231–240
https://doi.org/10.1016/j.watres.2005.10.022
125 F Mauvy, C Gondran, E Siebert. (1999). Potentiometric selectivity and impedance characteristics of a NASICON-based ion selective electrode. Electrochimica Acta, 44(13): 2219–2226
https://doi.org/10.1016/S0013-4686(98)00354-5
126 S N McCartney, N S Watanabe, N Y Yip. (2021). Emerging investigator series: thermodynamic and energy analysis of nitrogen and phosphorous recovery from wastewaters. Environmental Science. Water Research & Technology, 7(11): 2075–2088
https://doi.org/10.1039/D1EW00554E
127 P Meares. (1986). Synthetic Membranes: Science, Engineering and Applications. Dordrecht: Springer, 169–179
128 A J Medford, A Vojvodic, J S Hummelshoj, J Voss, F Abild-Pedersen, F Studt, T Bligaard, A Nilsson, J K Norskov. (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 328: 36–42
https://doi.org/10.1016/j.jcat.2014.12.033
129 A MehtaA L Zydney (2005). Permeability and selectivity analysis for ultrafiltration membranes. Journal of Membrane Science, 249(1–2): 245–249
130 H Miyoshi. (1997). Diffusion coefficients of ions through ion-exchange membranes for Donnan dialysis using ions of the same valence. Chemical Engineering Science, 52(7): 1087–1096
https://doi.org/10.1016/S0009-2509(96)00468-X
131 T Mubita, S Porada, P Aerts, A Van Der Wal. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. Journal of Membrane Science, 607: 118000
https://doi.org/10.1016/j.memsci.2020.118000
132 A Münchinger, K D Kreuer. (2019). Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions. Journal of Membrane Science, 592: 117372
https://doi.org/10.1016/j.memsci.2019.117372
133 Academies of Sciences E National Medicine (2019). A Research Agenda for Transforming Separation Science. Washington, DC National Academies Press
134 X Y Nie, S Y Sun, X F Song, J G Yu. (2017a). Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. Journal of Membrane Science, 530: 185–191
https://doi.org/10.1016/j.memsci.2017.02.020
135 X Y Nie, S Y Sun, Z Sun, X F Song, J G Yu. (2017b). Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination, 403: 128–135
https://doi.org/10.1016/j.desal.2016.05.010
136 E R Jr Nightingale. (1959). Phenomenological theory of ion solvation - effective radii of hydrated ions. Journal of Physical Chemistry, 63(9): 1381–1387
https://doi.org/10.1021/j150579a011
137 S Y Noskov, S Berneche, B Roux. (2004). Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 431(7010): 830–834
https://doi.org/10.1038/nature02943
138 Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (2020). Critical Materials Rare Earths Supply Chain: A Situational White Paper. Washington, DC: U.S. Department of Energy
139 K Oh, M Moazzam, G Gwak, H Ju. (2019). Water crossover phenomena in all-vanadium redox flow batteries. Electrochimica Acta, 297: 101–111
https://doi.org/10.1016/j.electacta.2018.11.151
140 H Ohya, K Masaoka, M Aihara, Y Negishi. (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1): 9–13
https://doi.org/10.1016/S0376-7388(98)00084-2
141 P K Parhi. (2013). Supported liquid membrane principle and its practices: a short review. Journal of Chemistry, 2013: 618236
142 H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman. (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
https://doi.org/10.1126/science.aab0530
143 R Parnamae, S Mareev, V Nikonenko, S Melnikov, N Sheldeshov, V Zabolotskii, H V M Hamelers, M Tedesco. (2021). Bipolar membranes: a review on principles, latest developments, and applications. Journal of Membrane Science, 617: 118538
https://doi.org/10.1016/j.memsci.2020.118538
144 D R Paul. (2004). Reformulation of the solution-diffusion theory of reverse osmosis. Journal of Membrane Science, 241(2): 371–386
https://doi.org/10.1016/j.memsci.2004.05.026
145 M Paul, H B Park, B D Freeman, A Roy, J E Mcgrath, J S Riffle. (2008). Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer, 49(9): 2243–2252
https://doi.org/10.1016/j.polymer.2008.02.039
146 S Porada, W J Van Egmond, J W Post, M Saakes, H V M Hamelers. (2018). Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis. Journal of Membrane Science, 552: 22–30
https://doi.org/10.1016/j.memsci.2018.01.050
147 Z X Qian, H Miedema, D Pintossi, M Ouma, E J R Sudholter. (2022). Selective removal of sodium ions from greenhouse drainage water: a combined experimental and theoretical approach. Desalination, 536: 115844
https://doi.org/10.1016/j.desal.2022.115844
148 Z X Qian, H Miedema, S Sahin, L C P M De Smet, E J R Sudholter. (2020). Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electro dialysis (ED) conditions. Desalination, 495: 114631
https://doi.org/10.1016/j.desal.2020.114631
149 J Ran, L Wu, Y B He, Z J Yang, Y M Wang, C X Jiang, L Ge, E Bakangura, T W Xu. (2017). Ion exchange membranes: new developments and applications. Journal of Membrane Science, 522: 267–291
https://doi.org/10.1016/j.memsci.2016.09.033
150 A Razmjou, M Asadnia, E Hosseini, A Habibnejad Korayem, V Chen. (2019). Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nature Communications, 10(1): 1–15
https://doi.org/10.1038/s41467-019-13648-7
151 C L Ren, J Shen, H Q Zeng. (2017). Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 139(36): 12338–12341
https://doi.org/10.1021/jacs.7b04335
152 X M Ren, S Gottesfeld. (2001). Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. Journal of the Electrochemical Society, 148(1): A87–A93
https://doi.org/10.1149/1.1344521
153 C L Ritt, M J Liu, T A Pham, R Epsztein, H J Kulik, M Elimelech. (2022). Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science Advances, 8(2): eabl5771
https://doi.org/10.1126/sciadv.abl5771
154 L M Robeson (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400
155 R A RobinsonR H Stokes (2002). Electrolyte Solutions (2nd revised ed.). Mineola: Dover Publications
156 A Rommerskirchen, H Roth, C J Linnartz, F Egidi, C Kneppeck, F Roghmans, M Wessling. (2021). Mitigating water crossover by crosslinked coating of cation-exchange membranes for brine concentration. Advanced Materials Technologies, 6(10): 2100202
https://doi.org/10.1002/admt.202100202
157 T Rottiers, K Ghyselbrecht, B Meesschaert, B Van der Bruggen, L Pinoy. (2014). Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions. Chemical Engineering Science, 113: 95–100
https://doi.org/10.1016/j.ces.2014.04.008
158 I Rubinstein. (1990). Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients. Journal of the Chemical Society, Faraday Transactions, 86(10): 1857–1861
https://doi.org/10.1039/ft9908601857
159 S T Russell, R Pereira, J T Vardner, G N Jones, C Dimarco, A C West, S K Kumar. (2020). Hydration effects on the permselectivity-conductivity trade-off in polymer electrolytes. Macromolecules, 53(3): 1014–1023
https://doi.org/10.1021/acs.macromol.9b02291
160 H S Sachar, E S Zofchak, N Marioni, Z Zhang, S Kadulkar, T J Duncan, B D Freeman, V Ganesan. (2022). Impact of cation–ligand interactions on the permselectivity of ligand-functionalized polymer membranes in single and mixed salt systems. Macromolecules, 55: 4821–4831
https://doi.org/10.1021/acs.macromol.2c00543
161 Román M F San, E Bringas, R Ibanez, I Ortiz. (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(1): 2–10
https://doi.org/10.1002/jctb.2252
162 G Saracco. (1997). Transport properties of monovalent-ion-permselective membranes. Chemical Engineering Science, 52(17): 3019–3031
https://doi.org/10.1016/S0009-2509(97)00107-3
163 T Sata. (2000). Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis — effect of hydrophilicity of anion exchange membranes on permselectivity of anions. Journal of Membrane Science, 167(1): 1–31
https://doi.org/10.1016/S0376-7388(99)00277-X
164 T Sata (2004). Ion Exchange Membranes Preparation, Characterization, Modification and Application. Cambridge: Royal Society of Chemistry
165 T SataT SataW Yang (T SataT Sata W Yang). Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. Journal of Membrane Science, 206(1–2): 31–60
166 P Shao, R Huang. (2007). Polymeric membrane pervaporation. Journal of Membrane Science, 287(2): 162–179
https://doi.org/10.1016/j.memsci.2006.10.043
167 P P Sharma, V Yadav, A Rajput, H Gupta, H Saravaia, V Kulshrestha. (2020). Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination, 496: 114755
https://doi.org/10.1016/j.desal.2020.114755
168 M A Shehzad, Y M Wang, A Yasmin, X L Ge, Y B He, X Liang, Y Zhu, M Hu, X L Xiao, L Ge, C X Jiang, Z J Yang, M D Guiver, L Wu, T W Xu. (2019). Biomimetic nanocones that enable high ion permselectivity. Angewandte Chemie International Edition, 58(36): 12646–12654
https://doi.org/10.1002/anie.201905972
169 Y X Shen, P O Saboe, I T Sines, M Erbakan, M Kumar. (2014). Biomimetic membranes: a review. Journal of Membrane Science, 454: 359–381
https://doi.org/10.1016/j.memsci.2013.12.019
170 C J Sheng, S Wijeratne, C Cheng, G L Baker, M L Bruening. (2014). Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. Journal of Membrane Science, 459: 169–176
https://doi.org/10.1016/j.memsci.2014.01.051
171 M U Siddiqui, A F M Arif, S Bashmal. (2016). Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: Effect of pore size and shape distribution and membrane stretching. Membranes (Basel), 6(3): 40
https://doi.org/10.3390/membranes6030040
172 Silva P, Han S J, Livingston A G (2005). Solvent transport in organic solvent nanofiltration membranes. Journal of Membrane Science, 262(1–2): 49−59
173 Y M Song, F S Pan, Y Li, K D Quan, Z Y Jiang. (2019). Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 13(3): 458–474
https://doi.org/10.1007/s11705-018-1780-1
174 K S Spiegler. (1958). Transport processes in ionic membranes. Transactions of the Faraday Society, 54(9): 1408–1428
https://doi.org/10.1039/tf9585401408
175 H Strathmann (2004). Ion-Exchange Membrane Separation Processes. Amsterdam: Elsevier
176 H Strathmann. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3): 268–288
https://doi.org/10.1016/j.desal.2010.04.069
177 H Strathmann, A Grabowski, G Eigenberger. (2013). Ion-exchange membranes in the chemical process industry. Industrial & Engineering Chemistry Research, 52(31): 10364–10379
https://doi.org/10.1021/ie4002102
178 R Sujanani, M R Landsman, S Jiao, J D Moon, M S Shell, D F Lawler, L E Katz, B D Freeman. (2020). Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery. ACS Macro Letters, 9(11): 1709–1717
https://doi.org/10.1021/acsmacrolett.0c00710
179 P Sun, F Zheng, M Zhu, Z Song, K Wang, M Zhong, D Wu, R B Little, Z Xu, H Zhu. (2014). Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano, 8(1): 850–859
https://doi.org/10.1021/nn4055682
180 S Takamuku, A Wohlfarth, A Manhart, P Rader, P Jannasch. (2015). Hypersulfonated polyelectrolytes: preparation, stability and conductivity. Polymer Chemistry, 6(8): 1267–1274
https://doi.org/10.1039/C4PY01177E
181 Y Tanaka (2003). Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater. Journal of Membrane Science, 215(1–2): 265–279
182 Y Tanaka (2015). Ion Exchange Membranes: Fundamentals and Applications. Waltham: Elsevier
183 C Tang, M P Bondarenko, A Yaroshchuk, M L Bruening. (2021). Highly selective ion separations based on counter-flow electromigration in nanoporous membranes. Journal of Membrane Science, 638: 119684
https://doi.org/10.1016/j.memsci.2021.119684
184 C Tang, M L Bruening. (2020). Ion separations with membranes. Journal of Polymer Science, 58(20): 2831–2856
https://doi.org/10.1002/pol.20200500
185 C Tang, A Yaroshchuk, M L Bruening. (2020). Flow through negatively charged, nanoporous membranes separates Li+ and K+ due to induced electromigration. Chemical Communications (Cambridge), 56(74): 10954–10957
https://doi.org/10.1039/D0CC03143G
186 S Tas, B Zoetebier, M A Hempenius, G J Vancso, K Nijmeijer. (2016). Monovalent cation selective crown ether containing poly(arylene ether ketone)/SPEEK blend membranes. RSC Advances, 6(60): 55635–55642
https://doi.org/10.1039/C6RA11566G
187 White House The (2018). A federal strategy to ensure secure and reliable supplies of critical minerals. Washington, DC: The White House
188 The White House (2022). FACT SHEET: Securing a Made in America Supply Chain for Critical Minerals. Washington, DC: The White House
189 M TirrellS HubbardD ShollE PetersonM TsapatsisK MaherW TumasD Giammar B GilbertY L Loo (2017). Basic Research Needs for Energy and Water: Report of the Office of Basic Energy Sciences Basic Research Needs Workshop for Energy and Water. Washington DC: USDOE Office of Science
190 X Tong, B P Zhang, Y S Chen. (2016). Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis. Journal of Membrane Science, 516: 162–171
https://doi.org/10.1016/j.memsci.2016.05.060
191 X Tongwen. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection: a review. Resources, Conservation and Recycling, 37(1): 1–22
https://doi.org/10.1016/S0921-3449(02)00032-0
192 A T K Tran, Y Zhang, D De Corte, J B Hannes, W Y Ye, P Mondal, N Jullok, B Meesschaert, L Pinoy, B Van der Bruggen. (2014). P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. Journal of Cleaner Production, 77: 140–151
https://doi.org/10.1016/j.jclepro.2014.01.069
193 P Trinke, G P Keeley, M Carmo, B Bensmann, R Hanke-Rauschenbach. (2019). Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content. Journal of the Electrochemical Society, 166(8): F465–F471
https://doi.org/10.1149/2.0171908jes
194 Y M Tu, L Samineni, T W Ren, A B Schantz, W Song, S Sharma, M Kumar. (2021). Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 620: 118968
https://doi.org/10.1016/j.memsci.2020.118968
195 A A Uliana, N T Bui, J Kamcev, M K Taylor, J J Urban, J R Long. (2021). Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 372(6539): 296–299
https://doi.org/10.1126/science.abf5991
196 B Van der Bruggen, A Koninckx, C Vandecasteele. (2004). Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research, 38(5): 1347–1353
https://doi.org/10.1016/j.watres.2003.11.008
197 P Vandezande, L E M Gevers, I F J Vankelecom. (2008). Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 37(2): 365–405
https://doi.org/10.1039/B610848M
198 D A VermaasM SaakesK (2011) Nijmeijer. Power generation using profiled membranes in reverse electrodialysis. Journal of Membrane Science, 385-386(1–2): 234–242
199 W VielstichA LammH A Gasteiger (2003). Handbook of Fuel Cells: Fundamentals, Technology, Applications. Hoboken: Wiley
200 V Vlasov, N Gvozdik, M Mokrousov, S Ryazantsev, S Y Luchkin, D Gorin, K Stevenson. (2022). Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery. Journal of Power Sources, 540: 231640
https://doi.org/10.1016/j.jpowsour.2022.231640
201 J Wang, D S Dlamini, A K Mishra, M T M Pendergast, M C Wong, B B Mamba, V Freger, A R Verliefde, E M Hoek. (2014a). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
https://doi.org/10.1016/j.memsci.2013.12.034
202 J W Wang, D S Dlamini, A K Mishra, M T M Pendergast, M C Y Wong, B B Mamba, V Freger, A R D Verliefde, E M V Hoek. (2014b). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
203 P F Wang, M Wang, F Liu, S Y Ding, X Wang, G H Du, J Liu, P Apel, P Kluth, C Trautmann, Y G Wang. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 9(1): 569
https://doi.org/10.1038/s41467-018-02941-6
204 R Y Wang, S H Lin. (2021). Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. Journal of Membrane Science, 620: 118809
https://doi.org/10.1016/j.memsci.2020.118809
205 W Wang, Y Zhang, F Li, Y Chen, S M Mojallali Rostami, S S Hosseini, L Shao. (2022a). Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. Journal of Membrane Science, 658: 120703
https://doi.org/10.1016/j.memsci.2022.120703
206 W Wang, Y Zhang, M Tan, C Xue, W Zhou, H Bao, C Hon Lau, X Yang, J Ma, L Shao. (2022b). Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Separation and Purification Technology, 297: 121520
https://doi.org/10.1016/j.seppur.2022.121520
207 W WangY ZhangX YangH SunY Wu L Shao (2022c). Monovalent cation exchange membranes with janus charged structure for ion separation. Engineering.
208 X Wang, N Li, J Li, J Feng, Z Ma, Y Xu, Y Sun, D Xu, J Wang, X Gao. (2019). Fluoride removal from secondary effluent of the graphite industry using electrodialysis: optimization with response surface methodology. Frontiers of Environmental Science & Engineering, 13(4): 51
209 Z Y Wang, Q H Meng, R C Ma, Z K Wang, Y J Yang, H Y Sha, X J Ma, X H Ruan, X Q Zou, Y Yuan. et al.. (2020). Constructing an ion pathway for uranium extraction from seawater. Chem, 6(7): 1683–1691
https://doi.org/10.1016/j.chempr.2020.04.012
210 S J Warnock, R Sujanani, E S Zofchak, S Zhao, T J Dilenschneider, K G Hanson, S Mukherjee, V Ganesan, B D Freeman, M M Abu-Omar, C M Bates. (2021). Engineering Li/Na selectivity in 12-crown-4-functionalized polymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2022197118
https://doi.org/10.1073/pnas.2022197118
211 P Warren (2021). Techno-economic analysis of lithium extraction from geothermal brines. Golden: National Renewable Energy Lab.(NREL)
212 Q Wen, D X Yan, F Liu, M Wang, Y Ling, P F Wang, P Kluth, D Schauries, C Trautmann, P Apel. et al.. (2016). Highly selective ionic transport through subnanometer pores in polymer films. Advanced Functional Materials, 26(32): 5796–5803
https://doi.org/10.1002/adfm.201601689
213 E Wiedemann, A Heintz, R N Lichtenthaler. (1998). Transport properties of vanadium ions in cation exchange membranes: Determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 141(2): 215–221
https://doi.org/10.1016/S0376-7388(97)00308-6
214 J G WijmansR W Baker (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107(1–2): 1–21
215 Y H Xi, Z Liu, J Y Ji, Y Wang, Y Faraj, Y D Zhu, R Xie, X J Ju, W Wang, X H Lu. et al.. (2018). Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science, 550: 208–218
https://doi.org/10.1016/j.memsci.2017.12.057
216 H Xiao, M Chai, M Abdollahzadeh, H Ahmadi, V Chen, D B Gore, M Asadnia, A Razmjou. (2022). A lithium ion selective membrane synthesized from a double layered Zr based metalorganic framework (MOF-on-MOF) thin film. Desalination, 532: 115733
https://doi.org/10.1016/j.desal.2022.115733
217 W Xie, J Cook, H B Park, B D Freeman, C H Lee, J E Mcgrath. (2011). Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer, 52(9): 2032–2043
https://doi.org/10.1016/j.polymer.2011.02.006
218 W W Xin, J R Fu, Y C Qian, L Fu, X Y Kong, T Ben, L Jiang, L P Wen. (2022). Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nature Communications, 13(1): 1701
https://doi.org/10.1038/s41467-022-29382-6
219 D Xu, Y Li, L Yin, Y Ji, J Niu, Y Yu. (2018). Electrochemical removal of nitrate in industrial wastewater. Frontiers of Environmental Science & Engineering, 12(1): 9
220 T W Xu (2005). Ion exchange membranes: state of their development and perspective. Journal of Membrane Science, 263(1–2): 1–29
221 H Y YanY M WangL WuM A ShehzadC X Jiang R Q FuZ M LiuT W Xu (2019). Multistage-batch electrodialysis to concentrate high-salinity solutions: process optimisation, water transport, and energy consumption. Journal of Membrane Science, 570-571: 245–257
222 J Yan, H Wang, R Fu, R Fu, R Li, B Chen, C Jiang, L Ge, Z Liu, Y Wang, T Xu (2022). Ion exchange membranes for acid recovery: Diffusion Dialysis (DD) or Selective Electrodialysis (SED)? Desalination, 531: 115690
223 A Yaroshchuk. (2000a). Asymptotic behaviour in the pressure-driven separations of ions of different mobilities in charged porous membranes. Journal of Membrane Science, 167(2): 163–185
https://doi.org/10.1016/S0376-7388(99)00281-1
224 A Yaroshchuk. (2000b). Optimal charged membranes for the pressure-driven separations of ions of different mobilities: theoretical analysis. Journal of Membrane Science, 167(2): 149–161
https://doi.org/10.1016/S0376-7388(99)00280-X
225 A E Yaroshchuk (2008). Negative rejection of ions in pressure-driven membrane processes. Advances in Colloid and Interface Science, 139(1–2): 150–173
226 A E YaroshchukY A Vovkogon (1994a). Phenomenological theory of pressure-driven transport of ternary electrolyte solutions with a common coin and its specification for capillary space—charge model. Journal of Membrane Science, 86(1–2): 1–18
227 A E YaroshchukY A Vovkogon (1994b). Pressure-driven transport of ternary electrolyte solutions with a common coion through charged membranes: numerical analysis. Journal of Membrane Science, 86(1–2): 19–37
228 H Yasuda, L Ikenberry, C Lamaze. (1969). Permeability of solutes through hydrated polymer membranes. Part II. Permeability of water soluble organic solutes. Die Makromolekulare Chemie, 125(1): 108–118
https://doi.org/10.1002/macp.1969.021250111
229 H Yasuda, C Lamaze, L Ikenberry. (1968). Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Die Makromolekulare Chemie, 118(1): 19–35
https://doi.org/10.1002/macp.1968.021180102
230 H Yasuda, C E Lamaze, A Peterlin. (1971). Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. Journal of Polymer Science Part A: 2-Polymer Physics, 9(6): 1117–1131
https://doi.org/10.1002/pol.1971.160090608
231 Y Ye, H H Ngo, W Guo, S W Chang, D D Nguyen, X Zhang, J Zhang, S Liang. (2020). Nutrient recovery from wastewater: From technology to economy. Bioresource Technology Reports, 11: 100425
https://doi.org/10.1016/j.biteb.2020.100425
232 V I ZabolotskyJ A ManzanaresV V NikonenkoK A LebedevE G Lovtsov (2002). Space charge effect on competitive ion transport through ion-exchange membranes. Desalination, 147(1–3): 387–392
233 H C Zhang, J Hou, Y X Hu, P Y Wang, R W Ou, L Jiang, J Z Liu, B D Freeman, A J Hill, H T Wang. (2018). Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 4(2): eaaq0066
https://doi.org/10.1126/sciadv.aaq0066
234 Y ZhangB Van der BruggenL PinoyB Meesschaert (2009). Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. Journal of Membrane Science, 332(1–2): 104–112
235 M Zhou, X Chen, J Pan, S Yang, B Han, L Xue, J Shen, C Gao, B Van der Bruggen. (2017a). A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis. Desalination, 415: 29–39
https://doi.org/10.1016/j.desal.2017.03.037
236 X B Zhou, G D Liu, K Yamato, Y Shen, R X Cheng, X X Wei, W L Bai, Y Gao, H Li, Y Liu. et al.. (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949
https://doi.org/10.1038/ncomms1949
237 X L Zhou, T S Zhao, L An, Y K Zeng, L Wei. (2017b). Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources, 339: 1–12
https://doi.org/10.1016/j.jpowsour.2016.11.040
238 J Zhu, J Liao, W Jin, B Luo, P Shen, A Sotto, J Shen, C Gao. (2019). Effect of functionality of cross-linker on sulphonated polysulfone cation exchange membranes for electrodialysis. Reactive & Functional Polymers, 138: 104–113
https://doi.org/10.1016/j.reactfunctpolym.2019.02.006
239 A Zlotorowicz, R V Strand, O S Burheim, O Wilhelmsen, S Kjelstrup. (2017). The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 523: 402–408
https://doi.org/10.1016/j.memsci.2016.10.003
240 E S Zofchak, Z D Zhang, N Marioni, T J Duncan, H S Sachar, A Chamseddine, B D Freeman, V Ganesan. (2022). Cation-ligand interactions dictate salt partitioning and diffusivity in ligand-functionalized polymer membranes. Macromolecules, 55(6): 2260–2270
https://doi.org/10.1021/acs.macromol.2c00035
241 Z Y Zou, N Ma, A P Wang, Y B Ran, T Song, Y Jiao, J P Liu, H Zhou, W Shi, B He. et al.. (2020). Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Advanced Energy Materials, 10(30): 2001486
https://doi.org/10.1002/aenm.202001486
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed