● Advances, challenges, and opportunities for catalytic water pollutant reduction.
● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction.
● New functionalities developed by screening and design of catalytic metal sites.
● Facile catalyst preparation approaches for convenient catalyst optimization.
● Rational design and non-decorative effort are essential for future work.
In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.
M M Abu-Omar, J H Espenson. (1995). Facile abstraction of successive oxygen atoms from perchlorate ions by methylrhenium dioxide. Inorganic Chemistry, 34(25): 6239–6240 https://doi.org/10.1021/ic00129a005
T E Barder, S L Buchwald. (2007a). Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory. Journal of the American Chemical Society, 129(39): 12003–12010 https://doi.org/10.1021/ja073747z
pmid: 17850080
4
T E Barder, S L Buchwald. (2007b). Rationale behind the resistance of dialkylbiaryl phosphines toward oxidation by molecular oxygen. Journal of the American Chemical Society, 129(16): 5096–5101 https://doi.org/10.1021/ja0683180
pmid: 17388595
5
R Baumgartner, K McNeill. (2012). Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environmental Science & Technology, 46(18): 10199–10205 https://doi.org/10.1021/es302188f
pmid: 22871102
6
R Baumgartner, G K Stieger, K McNeill. (2013). Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 47(12): 6545–6553 https://doi.org/10.1021/es401183v
pmid: 23663092
7
A BeckerV KochM SellH SchindlerG Neuenfeldt (1998). Method of removing chlorate and bromate compounds from water by catalytic reduction. European Patent EP0779880B1
8
J L Cerrillo, C W Lopes, F Rey, A E Palomares. (2021). The Influence of the support nature and the metal precursor in the activity of Pd-based catalysts for the bromate reduction reaction. ChemCatChem, 13(4): 1230–1238 https://doi.org/10.1002/cctc.202001797
9
B P Chaplin, M Reinhard, W F Schneider, C Schüth, J R Shapley, T J Strathmann, C J Werth. (2012). Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 46(7): 3655–3670 https://doi.org/10.1021/es204087q
pmid: 22369144
10
C Chen, K Li, C Li, T Sun, J Jia. (2019). Combination of Pd–Cu catalysis and electrolytic H2 evolution for selective nitrate reduction using protonated polypyrrole as a cathode. Environmental Science & Technology, 53(23): 13868–13877 https://doi.org/10.1021/acs.est.9b04447
pmid: 31577132
11
F Y Chen, Z Y Wu, S Gupta, D J Rivera, S V Lambeets, S Pecaut, J Y T Kim, P Zhu, Y Z Finfrock, D M Meira. et al.. (2022). Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 17(7): 759–767 https://doi.org/10.1038/s41565-022-01121-4
pmid: 35501378
12
G F Chen, Y Yuan, H Jiang, S Y Ren, L X Ding, L Ma, T Wu, J Lu, H Wang. (2020). Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy, 5(8): 605–613 https://doi.org/10.1038/s41560-020-0654-1
13
H Chen, Z Xu, H Wan, J Zheng, D Yin, S Zheng. (2010). Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Applied Catalysis B: Environmental, 96(3–4): 307–313 https://doi.org/10.1016/j.apcatb.2010.02.021
14
X Chen, X Huo, J Liu, Y Wang, C J Werth, T J Strathmann. (2017). Exploring beyond palladium: catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313: 745–752 https://doi.org/10.1016/j.cej.2016.12.058
15
J K Choe, M I Boyanov, J Liu, K M Kemner, C J Werth, T J Strathmann. (2014). X-ray spectroscopic characterization of immobilized rhenium species in hydrated rhenium–palladium bimetallic catalysts used for perchlorate water treatment. Journal of Physical Chemistry C, 118(22): 11666–11676 https://doi.org/10.1021/jp5006814
16
J K Choe, J R Shapley, T J Strathmann, C J Werth. (2010). Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction. Environmental Science & Technology, 44(12): 4716–4721 https://doi.org/10.1021/es100227z
pmid: 20481620
17
C Chu, D Huang, S Gupta, S Weon, J Niu, E Stavitski, C Muhich, J H Kim. (2021). Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 12(1): 5179 https://doi.org/10.1038/s41467-021-25526-2
pmid: 34462434
18
J Chung, R Nerenberg, B E Rittmann. (2007). Evaluation for biological reduction of nitrate and perchlorate in brine water using the hydrogen-based membrane biofilm reactor. Journal of Environmental Engineering, 133(2): 157–164 https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(157
19
R G Clem, E Huffman. (1968). Amperometric titration of palladium(II) by oxidation with hypochlorite. Analytical Chemistry, 40(6): 945–948 https://doi.org/10.1021/ac60262a047
20
W R Crowell, D M Yost, J D Roberts. (1940). The catalytic effect of osmium compounds on the reduction of perchloric acid by hydrobromic acid. Journal of the American Chemical Society, 62(8): 2176–2178 https://doi.org/10.1021/ja01865a073
21
D P Durkin, T Ye, J Choi, K J Livi, H C D Long, P C Trulove, D H Fairbrother, L M Haverhals, D Shuai. (2018). Sustainable and scalable natural fiber welded palladium-indium catalysts for nitrate reduction. Applied Catalysis B: Environmental, 221: 290–301 https://doi.org/10.1016/j.apcatb.2017.09.029
22
D Fontana, M Pietrantonio, S Pucciarmati, G N Torelli, C Bonomi, F Masi. (2018). Palladium recovery from monolithic ceramic capacitors by leaching, solvent extraction and reduction. Journal of Material Cycles and Waste Management, 20(2): 1199–1206 https://doi.org/10.1007/s10163-017-0684-3
23
F Fotouhi-Far, H Bashiri, M Hamadanian, M H Keshavarz. (2021). A new approach for the leaching of palladium from spent Pd/C catalyst in HCl–H2O2 system. Protection of Metals and Physical Chemistry of Surfaces, 57(2): 297–305 https://doi.org/10.1134/S2070205121010093
24
J Gao, C Ren, X Huo, R Ji, X Wen, J Guo, J Liu. (2021). Supported palladium catalysts: a facile preparation method and implications to reductive catalysis technology for water treatment. ACS ES&T Engineering, 1(3): 562–570
25
C Grittini, M Malcomson, Q Fernando, N Korte. (1995). Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11): 2898–2900 https://doi.org/10.1021/es00011a029
pmid: 22206541
26
B Gu, G M Brown, C C Chiang. (2007). Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environmental Science & Technology, 41(17): 6277–6282 https://doi.org/10.1021/es0706910
pmid: 17937315
27
S Guo, K Heck, S Kasiraju, H Qian, Z Zhao, L C Grabow, J T Miller, M S Wong. (2018). Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catalysis, 8(1): 503–515 https://doi.org/10.1021/acscatal.7b01371
28
S Guo, H Li, K N Heck, X Luan, W Guo, G Henkelman, M S Wong. (2022). Gold boosts nitrate reduction and deactivation resistance to indium-promoted palladium catalysts. Applied Catalysis B: Environmental, 305: 121048 https://doi.org/10.1016/j.apcatb.2021.121048
29
G Jr Haight. (1954). Mechanism of the tungstate catalyzed reduction of perchlorate by stannous chloride. Journal of the American Chemical Society, 76(18): 4718–4721 https://doi.org/10.1021/ja01647a067
30
G Jr Haight, W Sager. (1952). Evidence for preferential one-step divalent changes in the molybdate-catalyzed reduction of perchlorate by stannous ion in sulfuric acid solution. Journal of the American Chemical Society, 74(23): 6056–6059 https://doi.org/10.1021/ja01143a068
31
S Hamid, S Bae, W Lee. (2018). Novel bimetallic catalyst supported by red mud for enhanced nitrate reduction. Chemical Engineering Journal, 348: 877–887 https://doi.org/10.1016/j.cej.2018.05.016
32
W He, J Zhang, S Dieckhöfer, S Varhade, A C Brix, A Lielpetere, S Seisel, J R C Junqueira, W Schuhmann. (2022). Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nature Communications, 13(1): 1129 https://doi.org/10.1038/s41467-022-28728-4
pmid: 35236840
S Hörold, K D Vorlop, T Tacke, M Sell. (1993). Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today, 17(1–2): 21–30 https://doi.org/10.1016/0920-5861(93)80004-K
36
J L Howe, F N Mercer. (1925). Contributions to the study of ruthenium IX. Solubility of ruthenium in hypochlorite solutions and an attempt to utilize the reaction for the quantitative determination of the metal. Journal of the American Chemical Society, 47(12): 2926–2932 https://doi.org/10.1021/ja01689a010
37
X Huo, D J Van Hoomissen, J Liu, S Vyas, T J Strathmann. (2017). Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Applied Catalysis B: Environmental, 211: 188–198 https://doi.org/10.1016/j.apcatb.2017.04.045
38
K D Hurley, J R Shapley. (2007). Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology, 41(6): 2044–2049 https://doi.org/10.1021/es0624218
pmid: 17410803
39
K D Hurley, Y Zhang, J R Shapley. (2009). Ligand-enhanced reduction of perchlorate in water with heterogeneous Re-Pd/C catalysts. Journal of the American Chemical Society, 131(40): 14172–14173 https://doi.org/10.1021/ja905446t
pmid: 19772317
40
I Kolthoff. (1921). Jodometrische studien. Fresenius’ Zeitschrift für Analytische Chemie, 60(12): 448–457 https://doi.org/10.1007/BF01383656
41
X KongJ XiaoA ChenL ChenC Li L FengX RenX FanW SunZ Sun (2022). Enhanced catalytic denitrification performance of ruthenium-based catalysts by hydrogen spillover from a palladium promoter. Journal of Colloid and Interface Science, 608(Pt 3): 2973–2984
42
L I Kuznetsova, N I Kuznetsova, S V Koscheev, V I Zaikovskii, A S Lisitsyn, K M Kaprielova, N V Kirillova, Z Twardowski. (2012). Carbon-supported iridium catalyst for reduction of chlorate ions with hydrogen in concentrated solutions of sodium chloride. Applied Catalysis A, General, 427–428: 8–15 https://doi.org/10.1016/j.apcata.2012.03.024
43
C Y Lai, M Wu, X Lu, Y Wang, Z Yuan, J Guo. (2021). Microbial perchlorate reduction driven by ethane and propane. Environmental Science & Technology, 55(3): 2006–2015 https://doi.org/10.1021/acs.est.0c04103
pmid: 33434000
44
J Li, M Li, N An, S Zhang, Q Song, Y Yang, J Li, X Liu. (2022). Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proceedings of the National Academy of Sciences of the United States of America, 119(29): e2123450119 https://doi.org/10.1073/pnas.2123450119
pmid: 35858301
45
J Li, G Zhan, J Yang, F Quan, C Mao, Y Liu, B Wang, F Lei, L Li, A W M Chan, L Xu, Y Shi, Y Du, W Hao, P K Wong, J Wang, S X Dou, L Zhang, J C Yu. (2020). Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. Journal of the American Chemical Society, 142(15): 7036–7046 https://doi.org/10.1021/jacs.0c00418
pmid: 32223152
46
J Lim, C Y Liu, J Park, Y H Liu, T P Senftle, S W Lee, M C Hatzell. (2021). Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catalysis, 11(12): 7568–7577 https://doi.org/10.1021/acscatal.1c01413
47
J Liu, X Chen, Y Wang, T J Strathmann, C J Werth. (2015a). Mechanism and mitigation of the decomposition of an oxorhenium complex-based heterogeneous catalyst for perchlorate reduction in water. Environmental Science & Technology, 49(21): 12932–12940 https://doi.org/10.1021/acs.est.5b03393
pmid: 26422179
48
J Liu, J K Choe, Z Sasnow, C J Werth, T J Strathmann. (2013). Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Research, 47(1): 91–101 https://doi.org/10.1016/j.watres.2012.09.031
pmid: 23084116
49
J Liu, J K Choe, Y Wang, J R Shapley, C J Werth, T J Strathmann. (2015b). Bioinspired complex-nanoparticle hybrid catalyst system for aqueous perchlorate reduction: Rhenium speciation and its influence on catalyst activity. ACS Catalysis, 5(2): 511–522 https://doi.org/10.1021/cs501286w
50
J Liu, M Han, D Wu, X Chen, J K Choe, C J Werth, T J Strathmann. (2016a). A new bioinspired perchlorate reduction catalyst with significantly enhanced stability via rational tuning of rhenium coordination chemistry and heterogeneous reaction pathway. Environmental Science & Technology, 50(11): 5874–5881 https://doi.org/10.1021/acs.est.6b00886
pmid: 27182602
51
J Liu, X Su, M Han, D Wu, D L Gray, J R Shapley, C J Werth, T J Strathmann. (2017). Ligand design for isomer-selective oxorhenium(V) complex synthesis. Inorganic Chemistry, 56(3): 1757–1769 https://doi.org/10.1021/acs.inorgchem.6b03076
pmid: 28079368
52
J Liu, D Wu, X Su, M Han, S Y Kimura, D L Gray, J R Shapley, M M Abu-Omar, C J Werth, T J Strathmann. (2016b). Configuration control in the synthesis of homo-and heteroleptic bis (oxazolinylphenolato/thiazolinylphenolato) chelate ligand complexes of oxorhenium(V): isomer effect on ancillary ligand exchange dynamics and implications for perchlorate reduction catalysis. Inorganic Chemistry, 55(5): 2597–2611 https://doi.org/10.1021/acs.inorgchem.5b02940
pmid: 26894635
53
G V Lowry, M Reinhard. (2000). Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology, 34(15): 3217–3223 https://doi.org/10.1021/es991416j
54
G V Lowry, M Reinhard. (2001). Pd-catalyzed TCE dechlorination in water: effect of [H2](aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution. Environmental Science & Technology, 35(4): 696–702 https://doi.org/10.1021/es001623f
pmid: 11349280
C A Nogueira, A P Paiva, M C Costa, A M Rosa da Costa. (2020). Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl2 media. Environmental Technology, 41(18): 2293–2304 https://doi.org/10.1080/09593330.2018.1563635
pmid: 30605363
58
J Park, S An, E H Jho, S Bae, Y Choi, J K Choe. (2020). Exploring reductive degradation of fluorinated pharmaceuticals using Al2O3-supported Pt-group metallic catalysts: catalytic reactivity, reaction pathways, and toxicity assessment. Water Research, 185: 116242 https://doi.org/10.1016/j.watres.2020.116242
pmid: 32758791
59
J Park, Y Hwang, S Bae. (2019). Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites. Journal of Hazardous Materials, 374: 309–318 https://doi.org/10.1016/j.jhazmat.2019.04.051
pmid: 31022631
U Prüsse, S Hörold, K D Vorlop. (1997). Einfluß der präparationsbedingungen auf die eigenschaften von bimetallkatalysatoren zur nitratentfernung aus wasser. Chemieingenieurtechnik (Weinheim), 69(1–2): 93–97 https://doi.org/10.1002/cite.330690114
62
U PrüsseK D Vorlop (2001). Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A Chemical, 173(1−2): 313−328
63
C Ren, E Y Bi, J Gao, J Liu. (2022). Molybdenum-catalyzed perchlorate reduction: robustness, challenges, and solutions. ACS ES&T Engineering, 2(2): 181–188
64
C Ren, J Liu. (2021). Bioinspired catalytic reduction of aqueous perchlorate by one single-metal site with high stability against oxidative deactivation. ACS Catalysis, 11(11): 6715–6725 https://doi.org/10.1021/acscatal.0c05276
65
C Ren, P Yang, J Gao, X Huo, X Min, E Y Bi, Y Liu, Y Wang, M Zhu, J Liu. (2020). Catalytic reduction of aqueous chlorate with MoOx immobilized on Pd/C. ACS Catalysis, 10(15): 8201–8211 https://doi.org/10.1021/acscatal.0c02242
66
C Ren, P Yang, J Sun, E Y Bi, J Gao, J Palmer, M Zhu, Y Wu, J Liu. (2021a). A bioinspired molybdenum catalyst for aqueous perchlorate reduction. Journal of the American Chemical Society, 143(21): 7891–7896 https://doi.org/10.1021/jacs.1c00595
pmid: 34003633
67
Z Ren, U Bergmann, T Leiviskä. (2021b). Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/sulfite process. Water Research, 205: 117676 https://doi.org/10.1016/j.watres.2021.117676
pmid: 34600233
68
C E Schaefer, C Andaya, A Urtiaga, E R McKenzie, C P Higgins. (2015). Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). Journal of Hazardous Materials, 295: 170–175 https://doi.org/10.1016/j.jhazmat.2015.04.024
pmid: 25909497
S Shekhar, P Ryberg, J F Hartwig, J S Mathew, D G Blackmond, E R Strieter, S L Buchwald. (2006). Reevaluation of the mechanism of the amination of aryl halides catalyzed by BINAP-ligated palladium complexes. Journal of the American Chemical Society, 128(11): 3584–3591 https://doi.org/10.1021/ja045533c
pmid: 16536531
71
U K Singh, E R Strieter, D G Blackmond, S L Buchwald. (2002). Mechanistic insights into the Pd(BINAP)-catalyzed amination of aryl bromides: kinetic studies under synthetically relevant conditions. Journal of the American Chemical Society, 124(47): 14104–14114 https://doi.org/10.1021/ja026885r
pmid: 12440909
72
Standardization Administration of China (2022). National Standard of the People’s Republic of China: GB 5749−2022 Standards for Drinking Water Quality
73
E R Strieter, S L Buchwald. (2006). Evidence for the formation and structure of palladacycles during Pd-catalyzed C-N bond formation with catalysts derived from bulky monophosphinobiaryl ligands. Angewandte Chemie International Edition, 45(6): 925–928 https://doi.org/10.1002/anie.200502927
pmid: 16381052
74
J F Su, W F Kuan, C L Chen, C P Huang. (2020). Enhancing electrochemical nitrate reduction toward dinitrogen selectivity on Sn-Pd bimetallic electrodes by surface structure design. Applied Catalysis A, General, 606: 117809 https://doi.org/10.1016/j.apcata.2020.117809
75
T Tacke, K D Vorlop. (1993). Kinetische charakterisierung von katalysatoren zur selektiven entfernung von nitrat und nitrit aus wasser. Chemieingenieurtechnik (Weinheim), 65(12): 1500–1502 https://doi.org/10.1002/cite.330651216
76
R Van SantenA KlesingG NeuenfeldtA Ottmann (2001). Method for removing chlorate ions from solutions. U.S. Patent US6270682B1
77
K D Vorlop, S Hörold, K Pohlandt. (1992). Optimierung von trägerkatalysatoren zur selektiven nitritentfernung aus wasser. Chemieingenieurtechnik (Weinheim), 64(1): 82–83 https://doi.org/10.1002/cite.330640119
78
K D Vorlop, T Tacke. (1989). Erste schritte auf dem weg zur edelmetallkatalysierten nitrat-und nitrit-entfernung aus trinkwasser. Chemieingenieurtechnik (Weinheim), 61(10): 836–837 https://doi.org/10.1002/cite.330611023
79
Y Wang, J Liu, P Wang, C J Werth, T J Strathmann. (2014). Palladium nanoparticles encapsulated in core–shell silica: a structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catalysis, 4(10): 3551–3559 https://doi.org/10.1021/cs500971r
80
Y Wang, A Xu, Z Wang, L Huang, J Li, F Li, J Wicks, M Luo, D H Nam, C S Tan, Y Ding, J Wu, Y Lum, C T Dinh, D Sinton, G Zheng, E H Sargent. (2020). Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. Journal of the American Chemical Society, 142(12): 5702–5708 https://doi.org/10.1021/jacs.9b13347
pmid: 32118414
81
J D Webb, S Macquarrie, K Mceleney, C M Crudden. (2007). Mesoporous silica-supported Pd catalysts: An investigation into structure, activity, leaching and heterogeneity. Journal of Catalysis, 252(1): 97–109 https://doi.org/10.1016/j.jcat.2007.09.007
82
C J Werth, C Yan, J P Troutman. (2020). Factors impeding replacement of ion exchange with (electro) catalytic treatment for nitrate removal from drinking water. ACS ES&T Engineering, 1(1): 6–20
83
Y Wu, S Cai, D Wang, W He, Y Li. (2012). Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. Journal of the American Chemical Society, 134(21): 8975–8981 https://doi.org/10.1021/ja302606d
pmid: 22519877
84
Z Y Wu, M Karamad, X Yong, Q Huang, D A Cullen, P Zhu, C Xia, Q Xiao, M Shakouri, F Y Chen, J Y T Kim, Y Xia, K Heck, Y Hu, M S Wong, Q Li, I Gates, S Siahrostami, H Wang. (2021). Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 12(1): 2870 https://doi.org/10.1038/s41467-021-23115-x
pmid: 34001869
85
T Ye, N A Banek, D P Durkin, M Hu, X Wang, M J Wagner, D Shuai. (2018). Pd nanoparticle catalysts supported on nitrogen-functionalized activated carbon for oxyanion hydrogenation and water purification. ACS Applied Nano Materials, 1(12): 6580–6586 https://doi.org/10.1021/acsanm.8b01949
86
X Ye, J Nan, Z Ge, Q Xiao, B Liu, Y Men, J Liu. (2022). Simultaneous removal of iron, manganese, and ammonia enhanced by preloaded MnO2 on low-pressure ultrafiltration membrane. Journal of Membrane Science, 656: 120641 https://doi.org/10.1016/j.memsci.2022.120641
87
Y B Yin, S Guo, K N Heck, C A Clark, C L Conrad, M S Wong. (2018). Treating water by degrading oxyanions using metallic nanostructures. ACS Sustainable Chemistry & Engineering, 6(9): 11160–11175 https://doi.org/10.1021/acssuschemeng.8b02070
88
Y H Yu, P C Chiu. (2014). Kinetics and pathway of vinyl fluoride reduction over rhodium. Environmental Science & Technology Letters, 1(11): 448–452 https://doi.org/10.1021/ez500291g
89
A Yuan, H Zhao, W Shan, J-F Sun, J Deng, H Liu, R Liu, J-F Liu. (2021). The binding strength of reactive H*: a neglected key factor in Rh-catalyzed environmental hydrodefluorination reaction. ACS ES&T Engineering, 1(6): 1036–1045
90
Y Zhang, K D Hurley, J R Shapley. (2011). Heterogeneous catalytic reduction of perchlorate in water with Re-Pd/C catalysts derived from an oxorhenium(V) molecular precursor. Inorganic Chemistry, 50(4): 1534–1543 https://doi.org/10.1021/ic102158a
pmid: 21226477
91
Z Zhang, Y Xu, W Shi, W Wang, R Zhang, X Bao, B Zhang, L Li, F Cui. (2016). Electrochemical-catalytic reduction of nitrate over Pd–Cu/γAl2O3 catalyst in cathode chamber: enhanced removal efficiency and N2 selectivity. Chemical Engineering Journal, 290: 201–208 https://doi.org/10.1016/j.cej.2016.01.063
92
H P Zhao, S Van Ginkel, Y Tang, D W Kang, B Rittmann, R Krajmalnik-Brown. (2011). Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environmental Science & Technology, 45(23): 10155–10162 https://doi.org/10.1021/es202569b
pmid: 22017212
93
Y Zhuang, S Ahn, A L Seyfferth, Y Masue-Slowey, S Fendorf, R G Luthy. (2011). Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environmental Science & Technology, 45(11): 4896–4903 https://doi.org/10.1021/es104312h
pmid: 21557574