1. School of Environment, Harbin Institute of Technology, Harbin 150090, China 2. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3. Engineering Innovation Center of SUSTech (Beijing), Southern University of Science and Technology, Beijing 100083, China 4. Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China 5. Chinese Academy of Environmental Planning, Beijing 100043, China
● The application of ML in groundwater quality assessment and prediction is reviewed.
● Bibliometric analysis is performed and summarized to promote application.
● The details of the application of ML in GQAP are comprehensively summarized.
● Challenges and opportunities of using ML models in GQAP are discussed.
Groundwater quality assessment and prediction (GQAP) is vital for protecting groundwater resources. Traditional GQAP methods can not adequately capture the complex relationships among attributes and have the disadvantage of being computationally demanding. Recently, the application of machine learning (ML) in GAQP (GQAPxML) has been widely studied due to ML’s reliability and efficiency. While many GQAPxML publications exist, a thorough review is missing. This review provides a comprehensive summary of the development of ML applications in the field of GQAP. First, the workflow of ML modeling is briefly introduced, as are data preparation, model development, model evaluation, and model application. Second, 299 publications related to the topic are filtered, mainly through ML modeling. Subsequently, many aspects of GQAPxML, such as publication trends, the spatial distribution of study areas, the size of data sets, and ML algorithms, are discussed from a bibliometric perspective. In addition, we review in detail the well-established applications and recent findings for several subtopics, including groundwater quality assessment, groundwater quality modeling using groundwater quality parameters, groundwater quality spatial mapping, probability estimation of exceeding the groundwater quality threshold, groundwater quality temporal prediction, and the hybrid use of ML and physics-based models. Finally, the development of GQAPxML is explored from three perspectives: data collection and preprocessing, model building and evaluation, and the broadening of model applications. This review provides a reference for environmental scientists to better understand GQAPxML and promotes the development of innovative methods and improvements in modeling quality.
K A N Adiat , B E Akeredolu , A A Akinlalu , G M Olayanju . (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in gold mining environment: a case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring and Assessment, 192(9): 577 https://doi.org/10.1007/s10661-020-08532-7
2
P Agrawal , A Sinha , S Kumar , A Agarwal , A Banerjee , V G K Villuri , C S R Annavarapu , R Dwivedi , V V R Dera , J Sinha . et al.. (2021). Exploring artificial intelligence techniques for groundwater quality assessment. Water, 13(9): 1172 https://doi.org/10.3390/w13091172
3
P A Aguilera , A Fernández , R F Ropero , L Molina . (2013). Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research and Risk Assessment, 27(2): 435–447 https://doi.org/10.1007/s00477-012-0676-8
4
M E E Alahi , S C Mukhopadhyay , L Burkitt . (2018). Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sensors and Actuators. B, Chemical, 259: 753–761 https://doi.org/10.1016/j.snb.2017.12.104
5
T H H Aldhyani , M Al-Yaari , H Alkahtani , M Maashi . (2020). Water quality prediction using artificial intelligence algorithms. Applied Bionics and Biomechanics, 2020: 6659314 https://doi.org/10.1155/2020/6659314
6
E B Ali , T Abdeslam , B Youssef . (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245: 106625 https://doi.org/10.1016/j.agwat.2020.106625
7
M Alizamir , S Sobhanardakani . (2017). Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm. Environmental Health Engineering and Management, 4(4): 225–231 https://doi.org/10.15171/EHEM.2017.31
8
M Amini , K C Abbaspour , C A Johnson . (2010). A comparison of different rule-based statistical models for modeling geogenic groundwater contamination. Environmental Modelling & Software, 25(12): 1650–1657 https://doi.org/10.1016/j.envsoft.2010.05.014
9
M H Amini , M Arab , M G Faramarz , A Ghazikhani , M Gheibi . (2021). Presenting a soft sensor for monitoring and controlling well health and pump performance using machine learning, statistical analysis, and Petri net modeling. Environmental Science and Pollution Research International, 20: 1–17 https://doi.org/10.1007/s11356-021-12643-0
10
S Ardabili, A Mosavi, A R Várkonyi-Kóczy (2020). Advances in machine learning modeling reviewing hybrid and ensemble methods. In: Várkonyi-Kóczy A R, ed. Engineering for Sustainable Future. Cham: Springer International Publishing, 215–227
11
M Awais , B Aslam , A Maqsoom , U Khalil , F Ullah , S Azam , M Imran . (2021). Assessing nitrate contamination risks in groundwater: a machine learning approach. Applied Sciences, 11(21): 10034 https://doi.org/10.3390/app112110034
12
F B Banadkooki , M Ehteram , F Panahi , Sammen S Sh. , F B Othman , A El-Shafie . (2020). Estimation of total dissolved solids (TDS) using new hybrid machine learning models. Journal of Hydrology, 587: 124989 https://doi.org/10.1016/j.jhydrol.2020.124989
13
S S Band , S Janizadeh , S C Pal , I Chowdhuri , Z Siabi , A Norouzi , A M Melesse , M Shokri , A Mosavi . (2020). Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration. Sensors, 20(20): 5763 https://doi.org/10.3390/s20205763
14
J Barbosa Filho , I B De Oliveira . (2021). Development of a groundwater quality index: GWQI, for the aquifers of the state of Bahia, Brazil using multivariable analyses. Scientific Reports, 11(1): 16520 https://doi.org/10.1038/s41598-021-95912-9
15
R Barzegar , A Asghari Moghaddam . (2016). Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment, 2(1): 26 https://doi.org/10.1007/s40808-015-0072-8
16
R Barzegar , A Asghari Moghaddam , J Adamowski , E Fijani . (2017). Comparison of machine learning models for predicting fluoride contamination in groundwater. Stochastic Environmental Research and Risk Assessment, 31(10): 2705–2718 https://doi.org/10.1007/s00477-016-1338-z
17
R Barzegar , A Asghari Moghaddam , J Adamowski , B Ozga-Zielinski . (2018). Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stochastic Environmental Research and Risk Assessment, 32(3): 799–813 https://doi.org/10.1007/s00477-017-1394-z
18
M Bastani , T Harter . (2020). Effects of upscaling temporal resolution of groundwater flow and transport boundary conditions on the performance of nitrate-transport models at the regional management scale. Hydrogeology Journal, 28(4): 1299–1322 https://doi.org/10.1007/s10040-020-02133-x
19
S Bedi , A Samal , C Ray , D Snow . (2020). Comparative evaluation of machine learning models for groundwater quality assessment. Environmental Monitoring and Assessment, 192(12): 776 https://doi.org/10.1007/s10661-020-08695-3
20
W R Berghuijs , E Luijendijk , C Moeck , Y Van Der Velde , S T Allen . (2022). Global recharge data set indicates strengthened groundwater connection to surface fluxes. Geophysical Research Letters, 49(23): e2022GL099010 https://doi.org/10.1029/2022GL099010
21
R K Bhattacharjya , B Datta , M G Satish . (2007). Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. Journal of Hydrologic Engineering, 12(3): 273–282 https://doi.org/10.1061/(ASCE)1084-0699(2007)12:3(273
22
S Bindal , C K Singh . (2019). Predicting groundwater arsenic contamination: regions at risk in highest populated state of India. Water Research, 159: 65–76 https://doi.org/10.1016/j.watres.2019.04.054
23
H Brink, J W Richards, M Fetherolf, B Cronin (2017). Real-world machine learning. Greenwich, NY: Manning Shelter Island
24
D Brown (2020). Oregon Water Quality Index Data Summary Water Years 2010–2019. Hillsboro, USA: Oregon Department of Environmental Quality, 7
25
H Cao , X Xie , Y Wang , Y Deng . (2021). The interactive natural drivers of global geogenic arsenic contamination of groundwater. Journal of Hydrology, 597: 126214 https://doi.org/10.1016/j.jhydrol.2021.126214
26
F J Castellanos , J J Valero-Mas , J Calvo-Zaragoza , J R Rico-Juan . (2018). Oversampling imbalanced data in the string space. Pattern Recognition Letters, 103: 32–38 https://doi.org/10.1016/j.patrec.2018.01.003
27
M Chakraborty , S Sarkar , A Mukherjee , M Shamsudduha , K M Ahmed , A Bhattacharya , A Mitra . (2020). Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Science of the Total Environment, 748: 141107 https://doi.org/10.1016/j.scitotenv.2020.141107
28
N F Che Nordin , N S Mohd , S Koting , Z Ismail , M Sherif , A El-Shafie . (2021). Groundwater quality forecasting modelling using artificial intelligence: a review. Groundwater for Sustainable Development, 14: 100643 https://doi.org/10.1016/j.gsd.2021.100643
29
C Chen , W He , H Zhou , Y Xue , M Zhu . (2020a). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific Reports, 10(1): 3904 https://doi.org/10.1038/s41598-020-60698-9
30
Y Chen , L Song , Y Liu , L Yang , D Li . (2020b). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17): 5776 https://doi.org/10.3390/app10175776
31
R M Coyte , K L Mckinley , S Jiang , J Karr , G S Dwyer , A J Keyworth , C C Davis , A J Kondash , A Vengosh . (2020). Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Science of the Total Environment, 711: 135135 https://doi.org/10.1016/j.scitotenv.2019.135135
32
E D Cubuk, B Zoph, D Mané, V Vasudevan, Q V Le (2018). AutoAugment: Learning Augmentation Policies from Data. Ithaca, NY: ArXiv, abs/1805.09501
33
T Cui , D Pagendam , M Gilfedder . (2021). Gaussian process machine learning and Kriging for groundwater salinity interpolation. Environmental Modelling & Software, 144: 105170 https://doi.org/10.1016/j.envsoft.2021.105170
34
An T Dang , M Tsujimura , Thang H Nam , Tam N Van , Van B Doan , Duc D Thanh , D Quang-Van , Tien B Dieu , Anh N Trieu , Vo P Le . et al.. (2021). Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecological Indicators, 127: 107190
35
L A DeSimone , J P Pope , K M Ransom . (2020). Machine-learning models to map pH and redox conditions in groundwater in a layered aquifer system, Northern Atlantic Coastal Plain, eastern USA. Journal of Hydrology. Regional Studies, 30: 100690 https://doi.org/10.1016/j.ejrh.2020.100697
36
L A DeSimone , K M Ransom . (2021). Manganese in the Northern Atlantic Coastal Plain aquifer system, eastern USA—modeling regional occurrence with pH, redox, and machine learning. Journal of Hydrology. Regional Studies, 37: 100925 https://doi.org/10.1016/j.ejrh.2021.100925
37
S Díaz-Alcaide , P Martínez-Santos . (2019). Mapping fecal pollution in rural groundwater supplies by means of artificial intelligence classifiers. Journal of Hydrology, 577: 124006 https://doi.org/10.1016/j.jhydrol.2019.124006
38
L Ding , Q Wang , Y Zheng , X Chen , Y Zheng , J Zhang , H Xu . (2022). Analysis of health assessment of water resources of Futuan River in Rizhao City by 5G wireless communication. Wireless Communications and Mobile Computing, 2022: 3175769 https://doi.org/10.1155/2022/3175769
39
B Dzwairo . (2018). Multi-date trends in groundwater pollution from pit latrines. Journal of Water, Sanitation, and Hygiene for Development: a Journal of the International Water Association, 8(4): 607–621 https://doi.org/10.2166/washdev.2018.177
40
Keskin T Ekemen , E Özler , E Şander , M Düğenci , M Y Ahmed . (2020). Prediction of electrical conductivity using ANN and MLR: a case study from Turkey. Acta Geophysica, 68(3): 811–820 https://doi.org/10.1007/s11600-020-00424-1
41
A El Bilali , A Taleb , A Nafii , B Alabjah , N Mazigh . (2021). Prediction of sodium adsorption ratio and chloride concentration in a coastal aquifer under seawater intrusion using machine learning models. Environmental Technology & Innovation, 23: 101641 https://doi.org/10.1016/j.eti.2021.101641
42
F Emmert-Streib , M Dehmer . (2022). Taxonomy of machine learning paradigms: a data-centric perspective. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 12(5): e1470 https://doi.org/10.1002/widm.1470
43
M L Erickson , S M Elliott , C J Brown , P E Stackelberg , K M Ransom , J E Reddy , C A 3rd Cravotta . (2021). Machine-Learning predictions of high arsenic and high manganese at drinking water depths of the glacial aquifer system, northern continental United States. Environmental Science & Technology, 55(9): 5791–5805 https://doi.org/10.1021/acs.est.0c06740
44
M L Erickson , S M Elliott , C A Christenson , A L Krall . (2018). Predicting geogenic arsenic in drinking water wells in glacial aquifers, north‐central USA: accounting for depth‐dependent Features. Water Resources Research, 54(12): 172–187 https://doi.org/10.1029/2018WR023106
45
F Esmaeilbeiki , M R Nikpour , V K Singh , O Kisi , P Sihag , H Sanikhani . (2020). Exploring the application of soft computing techniques for spatial evaluation of groundwater quality variables. Journal of Cleaner Production, 276: 124206 https://doi.org/10.1016/j.jclepro.2020.124206
46
H T Fang , B C Jhong , Y C Tan , K Y Ke , M H Chuang . (2019). A two-stage approach integrating SOM- and MOGA-SVM-based algorithms to forecast spatial-temporal groundwater level with meteorological factors. Water Resources Management, 33(2): 797–818 https://doi.org/10.1007/s11269-018-2143-x
47
J Feng , L Yu , R Ma . (2022). AGCN-T: a traffic flow prediction model for spatial-temporal network dynamics. Journal of Advanced Transportation, 2022: 1217588 https://doi.org/10.1155/2022/1217588
48
Y Fourcade , A G Besnard , J Secondi . (2018). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 27(2): 245–256 https://doi.org/10.1111/geb.12684
49
M J Friedel , S R Wilson , M E Close , M Buscema , P Abraham , L Banasiak . (2020). Comparison of four learning-based methods for predicting groundwater redox status. Journal of Hydrology, 580: 124200 https://doi.org/10.1016/j.jhydrol.2019.124200
50
S George , A Dixit . (2021). A machine learning approach for prioritizing groundwater testing for per-and polyfluoroalkyl substances (PFAS). Journal of Environmental Management, 295: 113359 https://doi.org/10.1016/j.jenvman.2021.113359
51
V Gholami , M R Khaleghi , S Pirasteh , M J Booij . (2022). Comparison of Self-Organizing Map, artificial neural network, and co-active neuro-fuzzy inference system methods in simulating groundwater quality: geospatial artificial intelligence. Water Resources Management, 36(2): 451–469 https://doi.org/10.1007/s11269-021-02969-2
52
H N Guo , S B Wu , Y J Tian , J Zhang , H T Liu . (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: a review. Bioresource Technology, 319: 124114 https://doi.org/10.1016/j.biortech.2020.124114
53
S M Guzman , J O Paz , M L M Tagert . (2017). The use of NARX neural networks to forecast daily groundwater levels. Water Resources Management, 31(5): 1591–1603 https://doi.org/10.1007/s11269-017-1598-5
54
M Haghbin , A Sharafati , B Dixon , V Kumar . (2021). Application of soft computing models for simulating nitrate contamination in groundwater: comprehensive review, assessment and future opportunities. Archives of Computational Methods in Engineering, 28(5): 3569–3591 https://doi.org/10.1007/s11831-020-09513-2
55
M Hájek , B Jiménez-Alfaro , O Hájek , L Brancaleoni , M Cantonati , M Carbognani , A Dedić , D Dítě , R Gerdol , P Hájková . et al.. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3): 1089–1105 https://doi.org/10.5194/essd-13-1089-2021
56
M S Hanoon , A N Ahmed , C M Fai , A H Birima , A Razzaq , M Sherif , A Sefelnasr , A El-Shafie . (2021). Application of artificial intelligence models for modeling water quality in groundwater: comprehensive review, evaluation and futuretTrends. Water, Air, and Soil Pollution, 232(10): 411 https://doi.org/10.1007/s11270-021-05311-z
57
N Heidarzadeh . (2017). A practical low-cost model for prediction of the groundwater quality using artificial neural networks. Journal of Water Supply: Research & Technology–Aqua, 66(2): 86–95 https://doi.org/10.2166/aqua.2017.035
58
R Huang , C Ma , J Ma , X Huangfu , Q He . (2021). Machine learning in natural and engineered water systems. Water Research, 205: 117666 https://doi.org/10.1016/j.watres.2021.117666
59
P Humez , F Osselin , L J Wilson , M Nightingale , W Kloppmann , B Mayer . (2019). A probabilistic spproach for predicting methane occurrence in groundwater. Environmental Science & Technology, 53(21): 12914–12922 https://doi.org/10.1021/acs.est.9b03981
60
Z Ibn Ali , A Gharbi , M Zairi . (2020). Evaluation of groundwater quality in intensive irrigated zone of Northeastern Tunisia. Groundwater for Sustainable Development, 11: 100482 https://doi.org/10.1016/j.gsd.2020.100482
61
I Ilić , M Puharić , D Ilić . (2021). Groundwater quality assessment and prediction of spatial variations in the area of the Danube River Basin (Serbia). Water, Air, and Soil Pollution, 232(3): 117 https://doi.org/10.1007/s11270-021-05069-4
62
A Jalalkamali . (2015). Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth Science Informatics, 8(4): 885–894 https://doi.org/10.1007/s12145-015-0222-6
63
J S R Jang . (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665–685 https://doi.org/10.1109/21.256541
64
S Javadi , S M Hashemy Shahdany , A Neshat , A Chambel . (2020). Multi-parameter risk mapping of Qazvin aquifer by classic and fuzzy clustering techniques. Geocarto International, 37(4): 1160–1182
65
X Jia , D Hou , L Wang , D O’connor , J Luo . (2020). The development of groundwater research in the past 40 years: a burgeoning trend in groundwater depletion and sustainable management. Journal of Hydrology, 587: 125006 https://doi.org/10.1016/j.jhydrol.2020.125006
66
X Jia , D O’connor , D Hou , Y Jin , G Li , C Zheng , Y S Ok , D C W Tsang , J Luo . (2019). Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672: 551–562 https://doi.org/10.1016/j.scitotenv.2019.03.457
67
M I Jordan , T M Mitchell . (2015). Machine learning: trends, perspectives, and prospects. Science, 349(6245): 255–260 https://doi.org/10.1126/science.aaa8415
68
A K Kadam , V M Wagh , A A Muley , B N Umrikar , R N Sankhua . (2019). Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India. Modeling Earth Systems and Environment, 5(3): 951–962 https://doi.org/10.1007/s40808-019-00581-3
69
M Khaki , I Yusoff , N Islami . (2015). Application of the artificial neural network and neuro-fuzzy system for assessment of groundwater quality. Clean, 43(4): 551–560 https://doi.org/10.1002/clen.201400267
70
M Khalaj , M Kholghi , B Saghafian , J Bazrafshan . (2019). Impact of climate variation and human activities on groundwater quality in northwest of Iran. Journal of Water Supply: Research & Technology–Aqua, 68(2): 121–135 https://doi.org/10.2166/aqua.2019.064
71
M U Khan , M Musahib , R Vishwakarma , N Rai , A Jahan . (2023). Hydrochemical characterization, mechanism of mobilization, and natural background level evaluation of arsenic in the aquifers of upper Gangetic plain, India. Geochemistry, 83(2): 125952 https://doi.org/10.1016/j.chemer.2023.125952
72
K J Knierim , J A Kingsbury , C J Haugh , K M Ransom . (2020). Using boosted regression tree models to predict salinity in Mississippi embayment aquifers, central United States. Journal of the American Water Resources Association, 56(6): 1010–1029 https://doi.org/10.1111/1752-1688.12879
73
L Knoll , L Breuer , M Bach . (2019). Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Science of the Total Environment, 668: 1317–1327 https://doi.org/10.1016/j.scitotenv.2019.03.045
74
R Kohavi (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal, Quebec, Canada: Morgan Kaufmann Publishers Inc., 1137–1143
75
Y N Kontos , T Kassandros , K Perifanos , M Karampasis , K L Katsifarakis , K Karatzas . (2022). Machine learning for groundwater pollution source identification and monitoring network optimization. Neural Computing & Applications, 34(22): 19515–19545 https://doi.org/10.1007/s00521-022-07507-8
76
S Kouadri , A Elbeltagi , A R M T Islam , S Kateb . (2021). Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Applied Water Science, 11(12): 190 https://doi.org/10.1007/s13201-021-01528-9
77
S Kouadri , C B Pande , B Panneerselvam , K N Moharir , A Elbeltagi . (2022). Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environmental Science and Pollution Research International, 29(14): 21067–21091 https://doi.org/10.1007/s11356-021-17084-3
78
M Kulisz , J Kujawska , B Przysucha , W Cel . (2021). Forecasting water quality index in groundwater using artificial neural network. Energies, 14(18): 5875 https://doi.org/10.3390/en14185875
79
G R Kumar, D Kishore, G V M G Kumar, Avila J, Thenmozhi K, Amirtharaja R, Praveenkumar P (2021). Waste contamination in Water: a Real-time Water Quality Monitoring System using IoT. Coimbatore, India: IEEE, 1–4
80
A Lal , B Datta . (2018a). Development and implementation of support vector machine regression surrogate models for predicting groundwater pumping-induced saltwater intrusion into coastal aquifers. Water Resources Management, 32(7): 2405–2419 https://doi.org/10.1007/s11269-018-1936-2
81
A Lal , B Datta . (2018b). Modelling saltwater intrusion processes and development of a multi-objective strategy for management of coastal aquifers utilizing planned artificial freshwater recharge. Modeling Earth Systems and Environment, 4(1): 111–126 https://doi.org/10.1007/s40808-017-0405-x
82
A Lal , B Datta . (2020). Performance evaluation of homogeneous and heterogeneous ensemble models for groundwater salinity predictions: a regional-scale comparison study. Water, Air, and Soil Pollution, 231(6): 320 https://doi.org/10.1007/s11270-020-04693-w
83
J J Lee , C S Jang , C W Liu , C P Liang , S W Wang . (2009). Determining the probability of arsenic in groundwater using a parsimonious model. Environmental Science & Technology, 43(17): 6662–6668 https://doi.org/10.1021/es900540s
84
K Lei, Q Fu, Y Liang (2019). Multi-Task Learning with Capsule Networks. Budapes: IEEE, 1–8
85
F Li, Y Liu, P Wu, F Dong, Q Cai, Z Wang (2021). A survey on recent advances in meta-learning. Chinese Journal of Computers, 44(2): 422–446(in Chinese)
86
X Li , M Feng , Y Ran , Y Su , F Liu , C Huang , H Shen , Q Xiao , J Su , S Yuan , H Guo . (2023). Big data in earth system science and progress towards a digital twin. Nature Reviews. Earth & Environment, 4(5): 319–332 https://doi.org/10.1038/s43017-023-00409-w
87
Z Lipton . (2016). The mythos of model interpretability. Communications of the ACM, 61(10): 36–43
88
C W Liu , Y B Wang , C S Jang . (2013). Probability-based nitrate contamination map of groundwater in Kinmen. Environmental Monitoring and Assessment, 185(12): 10147–10156 https://doi.org/10.1007/s10661-013-3319-8
89
D Liu , C Liu , Q Fu , T Li , M I Khan , S Cui , M A Faiz . (2018). Projection pursuit evaluation model of regional surface water environment based on improved Chicken Swarm Optimization algorithm. Water Resources Management, 32(4): 1325–1342 https://doi.org/10.1007/s11269-017-1872-6
90
M Łukasik , D Dąbrowska . (2022). Groundwater quality testing in the area of municipal waste landfill sites in Dąbrowa Górnicza (Southern Poland). Environmental & Socio-economic Studies, 10(1): 13–21 https://doi.org/10.2478/environ-2022-0002
91
S Mallik , U Mishra , N Paul . (2021). Groundwater suitability analysis for drinking using GIS based fuzzy logic. Ecological Indicators, 121: 107179 https://doi.org/10.1016/j.ecolind.2020.107179
92
A Masood , M A U R Tariq , M Z U R Hashmi , M Waseem , M K Sarwar , W Ali , R Farooq , M Almazroui , A W M Ng . (2022). An overview of groundwater monitoring through point-to satellite-based techniques. Water, 14(4): 565 https://doi.org/10.3390/w14040565
93
M Mathivanan , C Sabarathinam , P Mohan Viswanathan , V Senapathi , D Nadesan , G G Indrani , G Malaimegu , S S Kumar . (2022). Mobilization and health risk assessment of fertilizer induced uranium in coastal groundwater. Environmental Research, 203: 111791 https://doi.org/10.1016/j.envres.2021.111791
94
H Meyer , C Reudenbach , T Hengl , M Katurji , T Nauss . (2018). Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101: 1–9 https://doi.org/10.1016/j.envsoft.2017.12.001
95
A Mfumu Kihumba , J Ndembo Longo , M Vanclooster . (2016). Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo. Hydrogeology Journal, 24(2): 425–437 https://doi.org/10.1007/s10040-015-1337-z
A Motevalli , S A Naghibi , H Hashemi , R Berndtsson , B Pradhan , V Gholami . (2019). Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. Journal of Cleaner Production, 228: 1248–1263 https://doi.org/10.1016/j.jclepro.2019.04.293
98
S A Naghibi , H R Pourghasemi , K Abbaspour . (2018). A comparison between ten advanced and soft computing models for groundwater Qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131(3–4): 967–984 https://doi.org/10.1007/s00704-016-2022-4
99
A Naghikhani , A Jodeiri , A Karbassi , M Baghdadi , A Sarang , A H Buchali Safiee . (2021). Investigating the artificial intelligence methods for determining performance of the NZVI permeable reactive barriers. Groundwater for Sustainable Development, 12: 100516 https://doi.org/10.1016/j.gsd.2020.100516
100
A Nandi, A K Pal (2021). Interpreting machine learning models: learn model interpretability and explainability methods. Berlin: Springer
101
B T Nolan , M N Fienen , D L Lorenz . (2015). A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. Journal of Hydrology, 531: 902–911 https://doi.org/10.1016/j.jhydrol.2015.10.025
102
B T Nolan , C T Green , P F Juckem , L Liao , J E Reddy . (2018). Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA. Journal of Hydrology, 559: 428–441 https://doi.org/10.1016/j.jhydrol.2018.02.029
103
A M Nosair , M Y Shams , L M Abouelmagd , A E Hassanein , A E Fryar , H S Abu Salem . (2022). Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: a case study of the Nile Delta aquifer, Egypt. Environmental Science and Pollution Research International, 29(6): 9318–9340 https://doi.org/10.1007/s11356-021-16289-w
104
V Nourani , M T Alami , F D Vousoughi . (2016). Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics, 18(2): 288–309 https://doi.org/10.2166/hydro.2015.143
105
M Nssibi , G Manita , O Korbaa . (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49: 100559 https://doi.org/10.1016/j.cosrev.2023.100559
106
I Ouedraogo , P Defourny , M Vanclooster . (2019). Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal, 27(3): 1081–1098 https://doi.org/10.1007/s10040-018-1900-5
107
J Padarian , B Minasny , A B Mcbratney . (2020). Machine learning and soil sciences: a review aided by machine learning tools. Soil, 6(1): 35–52 https://doi.org/10.5194/soil-6-35-2020
108
T Paepae , P N Bokoro , K Kyamakya . (2021). From fully physical to virtual sensing for water quality assessment: a comprehensive review of the relevant state-of-the-art. Sensors, 21(21): 6971 https://doi.org/10.3390/s21216971
109
J Pal , D Chakrabarty . (2020). Assessment of artificial neural network models based on the simulation of groundwater contaminant transport. Hydrogeology Journal, 28(6): 2039–2055 https://doi.org/10.1007/s10040-020-02180-4
110
Y J Pan , H X Peng , Q Q Hou , K Peng , H H Shi , S M Wang , W H Zhang , M Zeng , C S Huang , L T Xu . et al.. (2023). Priority control factors for heavy metal groundwater contamination in peninsula regions based on source-oriented health risk assessment. Science of the Total Environment, 894: 165062 https://doi.org/10.1016/j.scitotenv.2023.165062
J Podgorski , R Wu , B Chakravorty , D A Polya . (2020). Groundwater arsenic distribution in India by machine learning geospatial modeling. International Journal of Environmental Research and Public Health, 17(19): 7119 https://doi.org/10.3390/ijerph17197119
113
J E Podgorski , P Labhasetwar , D Saha , M Berg . (2018). Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environmental Science & Technology, 52(17): 9889–9898 https://doi.org/10.1021/acs.est.8b01679
114
G J Postma , P W T Krooshof , L M C Buydens . (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705(1–2): 123–134 https://doi.org/10.1016/j.aca.2011.04.025
115
M Poursaeid , R Mastouri , S Shabanlou , M Najarchi . (2021). Modelling qualitative and quantitative parameters of groundwater using a new wavelet conjunction heuristic method: wavelet extreme learning machine versus wavelet neural networks. Water and Environment Journal : the Journal / the Chartered Institution of Water and Environmental Management, 35(1): 67–83 https://doi.org/10.1111/wej.12595
116
R K Prasad , S Mathur . (2007). Groundwater flow and contaminant transport simulation with imprecise parameters. Journal of Irrigation and Drainage Engineering, 133(1): 61–70 https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(61
117
B Purkait . (2008). Application of artificial neural network model to study arsenic contamination in groundwater of Malda District, eastern India. Journal of Environmental Informatics, 12(2): 140–149 https://doi.org/10.3808/jei.200800132
118
M Radfard , H Soleimani , S Nabavi , B Hashemzadeh , H Akbari , H Akbari , A Adibzadeh . (2018). Data on estimation for sodium absorption ratio: using artificial neural network and multiple linear regressions. Data in Brief, 20: 1462–1467 https://doi.org/10.1016/j.dib.2018.08.205
119
H Raheja , A Goel , M Pal . (2022). Prediction of groundwater quality indices using machine learning algorithms. Water Practice & Technology, 17(1): 336–351 https://doi.org/10.2166/wpt.2021.120
120
O Rahmati , B Choubin , A Fathabadi , F Coulon , E Soltani , H Shahabi , E Mollaefar , J Tiefenbacher , S Cipullo , B B Ahmad . et al.. (2019). Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Science of the Total Environment, 688: 855–866 https://doi.org/10.1016/j.scitotenv.2019.06.320
121
T Rajaee , H Ebrahimi , V Nourani . (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology, 572: 336–351 https://doi.org/10.1016/j.jhydrol.2018.12.037
122
A Ranjbar , C Cherubini . (2020). Development of a robust ensemble meta-model for prediction of salinity time series under uncertainty (case study: Talar aquifer). Heliyon, 6(12): e05758 https://doi.org/10.1016/j.heliyon.2020.e05758
123
K M Ransom, B T Nolan, Traum J A, Faunt C C, Bell A M, Gronberg J A M, Wheeler D C, Jurgens B, Schwarz G E, Belitz K, et al. (2017). A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Science of the Total Environment, 601–602: 1160–1172 https://doi.org/10.1016/j.scitotenv.2017.05.192
124
A Razavi Dizaji , S A Hosseini , V Rezaverdinejad , A Sharafati . (2020). Assessing pollution risk in Ardabil aquifer groundwater of Iran with arsenic and nitrate using the SINTACS model. Polish Journal of Environmental Studies, 29(4): 2609–2616 https://doi.org/10.15244/pjoes/112903
125
H M Rizeei , O S Azeez , B Pradhan , H H Khamees . (2018). Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environmental Monitoring and Assessment, 190(11): 633 https://doi.org/10.1007/s10661-018-7013-8
126
G Robinson , S Moutari , A A Ahmed , G A Hamill . (2018). An advanced calibration method for image analysis in laboratory-scale seawater intrusion problems. Water Resources Management, 32(9): 3087–3102 https://doi.org/10.1007/s11269-018-1977-6
127
G Rock , H Kupfersberger . (2019). Modeling shallow groundwater nitrate concentrations by direct coupling of the vadose and the saturated zone. Environmental Earth Sciences, 78(9): 283 https://doi.org/10.1007/s12665-019-8288-y
128
V Rodriguez-Galiano, M P Mendes, M J Garcia-Soldado, M Chica-Olmo, L Ribeiro (2014). Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476–477: 189–206 https://doi.org/10.1016/j.scitotenv.2014.01.001
129
V F Rodriguez-Galiano , J A Luque-Espinar , M Chica-Olmo , M P Mendes . (2018). Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods. Science of the Total Environment, 624: 661–672 https://doi.org/10.1016/j.scitotenv.2017.12.152
130
J Roostaei , S Colley , R Mulhern , A A May , J M Gibson . (2021). Predicting the risk of GenX contamination in private well water using a machine-learned Bayesian network model. Journal of Hazardous Materials, 411: 125075 https://doi.org/10.1016/j.jhazmat.2021.125075
131
F Sajedi-Hosseini , A Malekian , B Choubin , O Rahmati , S Cipullo , F Coulon , B Pradhan . (2018). A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment, 644: 954–962 https://doi.org/10.1016/j.scitotenv.2018.07.054
132
M Sakizadeh . (2015). Artificial intelligence for the prediction of water quality index in groundwater systems. Modeling Earth Systems and Environment, 2(1): 1–9
133
M Sakizadeh , H Rahmatinia . (2017). Statistical learning methods for classification and prediction of groundwater quality using a small data record. International Journal of Agricultural and Environmental Information Systems, 8(4): 37–53 https://doi.org/10.4018/IJAEIS.2017100103
134
S Sarkar , A Mukherjee , S Duttagupta , S N Bhanja , A Bhattacharya , S Chakraborty . (2021). Vulnerability of groundwater from elevated nitrate pollution across India: insights from spatio-temporal patterns using large-scale monitoring data. Journal of Contaminant Hydrology, 243: 103895 https://doi.org/10.1016/j.jconhyd.2021.103895
135
R Sarma , S K Singh . (2021). Simulating contaminant transport in unsaturated and saturated groundwater zones. Water Environment Research, 93(9): 1496–1509 https://doi.org/10.1002/wer.1555
136
S Sasikaran , K Sritharan , S Balakumar , V Arasaratnam . (2012). Physical, chemical and microbial analysis of bottled drinking water. Ceylon Medical Journal, 57(3): 111–116 https://doi.org/10.4038/cmj.v57i3.4149
137
B R Scanlon , S Fakhreddine , A Rateb , Graaf I De , J Famiglietti , T Gleeson , R Q Grafton , E Jobbagy , S Kebede , S R Kolusu . et al.. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews. Earth & Environment, 4(2): 87–101 https://doi.org/10.1038/s43017-022-00378-6
138
D Shadrin , A Nikitin , P Tregubova , V Terekhova , R Jana , S Matveev , M Pukalchik . (2021). An automated approach to groundwater quality monitoring—geospatial mapping based on combined application of Gaussian Process Regression and Bayesian Information Criterion. Water, 13(4): 400 https://doi.org/10.3390/w13040400
139
R Shaker , M Bucur , S Costache , D Sava , T Ehlinger . (2010). Land coverand landscape as predictors of groundwater contamination: a neural-network modelling approach applied to dobrogea, romania. Journal of Environmental Protection and Ecology, 11: 337–348
140
R Shakeri , H R Nassery , T Ebadi . (2023). Numerical modeling of groundwater flow and nitrate transport using MODFLOW and MT3DMS in the Karaj alluvial aquifer, Iran. Environmental Monitoring and Assessment, 195(1): 242 https://doi.org/10.1007/s10661-022-10881-4
141
P R Shekar , A Mathew . (2023). Assessing groundwater potential zones and artificial recharge sites in the monsoon-fed Murredu river basin, India: an integrated approach using GIS, AHP, and Fuzzy-AHP. Groundwater for Sustainable Development, 23: 15
142
M I Silva , A M L Gonçalves , W A Lopes , M T V Lima , C T F Costa , M Paris , P R A Firmino , Paula Filho F J De . (2021). Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. Journal of Hydrology, 598: 126346 https://doi.org/10.1016/j.jhydrol.2021.126346
143
S Singha , S Pasupuleti , S S Singha , S Kumar . (2020). Effectiveness of groundwater heavy metal pollution indices studies by deep-learning. Journal of Contaminant Hydrology, 235: 103718 https://doi.org/10.1016/j.jconhyd.2020.103718
144
S Singha , S Pasupuleti , S S Singha , R Singh , S Kumar . (2021). Prediction of groundwater quality using efficient machine learning technique. Chemosphere, 276: 130265 https://doi.org/10.1016/j.chemosphere.2021.130265
145
K Skeppström , B Olofsson . (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. Science of the Total Environment, 367(2–3): 666–680 https://doi.org/10.1016/j.scitotenv.2006.02.044
146
A Soltani Mohammadi , A Sayadi Shahraki , A A Naseri . (2017). Simulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain). Pollution, 3(2): 191–200
147
J Sreekanth , B Datta . (2014). Stochastic and robust multi-objective optimal management of pumping from coastal aquifers under parameter uncertainty. Water Resources Management, 28(7): 2005–2019 https://doi.org/10.1007/s11269-014-0591-5
148
P E Stackelberg , K Belitz , C J Brown , M L Erickson , S M Elliott , L J Kauffman , K M Ransom , J E Reddy . (2021). Machine learning predictions of pH in the glacial aquifer system, northern USA. Ground Water, 59(3): 352–368 https://doi.org/10.1111/gwat.13063
149
N Subba Rao . (2021). Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environmental Geochemistry and Health, 43(2): 971–993 https://doi.org/10.1007/s10653-020-00621-3
150
L T V Sukrutha , S P Mohanty, E Kougianos, C Ray (2021). G-DaM: A Blockchain based Distributed Robust Framework for Ground Water Data Management. Jaipur, India: IEEE, 261–266
151
J Sun , G Wang . (2020). Geographic Information System technology combined with back propagation neural network in groundwater quality monitoring. ISPRS International Journal of Geo-Information, 9(12): 736 https://doi.org/10.3390/ijgi9120736
152
Z Tan , Q Yang , Y Zheng . (2020). Machine learning models of groundwater arsenic spatial distribution in Bangladesh: influence of Holocene sediment depositional history. Environmental Science & Technology, 54(15): 9454–9463 https://doi.org/10.1021/acs.est.0c03617
153
H Tao , M M Hameed , H A Marhoon , M Zounemat-Kermani , S Heddam , S Kim , S O Sulaiman , M L Tan , Z Sa’adi , A D Mehr . et al.. (2022). Groundwater level prediction using machine learning models: a comprehensive review. Neurocomputing, 489: 271–308 https://doi.org/10.1016/j.neucom.2022.03.014
154
Q Tao, P Xu, M Li, W Lu (2021). Machine learning for perovskite materials design and discovery. npj Computational Materials, 7(1): 23
155
A N Tarekegn , M Giacobini , K Michalak . (2021). A review of methods for imbalanced multi-label classification. Pattern Recognition, 118: 107965 https://doi.org/10.1016/j.patcog.2021.107965
156
M Taubert , S Stöckel , P Geesink , S Girnus , N Jehmlich , Bergen M Von , P Rösch , J Popp , K Küsel . (2018). Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environmental Microbiology, 20(1): 369–384 https://doi.org/10.1111/1462-2920.14010
157
A J Tesoriero , J A Gronberg , P F Juckem , M P Miller , B P Austin . (2017). Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification. Water Resources Research, 53(8): 7316–7331 https://doi.org/10.1002/2016WR020197
158
J Thiyagalingam , M Shankar , G Fox , T Hey . (2022). Scientific machine learning benchmarks. Nature Reviews. Physics, 4(6): 413–420 https://doi.org/10.1038/s42254-022-00441-7
159
K H Thung , C Y Wee . (2018). A brief review on multi-task learning. Multimedia Tools and Applications, 77(22): 29705–29725 https://doi.org/10.1007/s11042-018-6463-x
160
T M Tiyasha , Z M Tung . (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585: 124670 https://doi.org/10.1016/j.jhydrol.2020.124670
161
R Trach , Y Trach , A Kiersnowska , A Markiewicz , M Lendo-Siwicka , K Rusakov . (2022). A sudy of assessment and prediction of water quality index using fuzzy logic and ANN models. Sustainability, 14(9): 5656 https://doi.org/10.3390/su14095656
162
N K C Twarakavi , J J Kaluarachchi . (2005). Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Ground Water, 43(2): 200–214 https://doi.org/10.1111/j.1745-6584.2005.0001.x
163
V Uddameri , A Silva , S Singaraju , G Mohammadi , E Hernandez . (2020). Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas. Water, 12(4): 1023 https://doi.org/10.3390/w12041023
164
L Uusitalo , A Lehikoinen , I Helle , K Myrberg . (2015). An overview of methods to evaluate uncertainty of deterministic models in decision support. Environmental Modelling & Software, 63: 24–31 https://doi.org/10.1016/j.envsoft.2014.09.017
165
S Vafadar , M Rahimzadegan , R Asadi . (2023). Evaluating the performance of machine learning methods and Geographic Information System (GIS) in identifying groundwater potential zones in Tehran-Karaj plain, Iran. Journal of Hydrology, 624: 129952 https://doi.org/10.1016/j.jhydrol.2023.129952
166
S Viaroli , M Lancia , V Re . (2022). Microplastics contamination of groundwater: current evidence and future perspectives―A review. Science of the Total Environment, 824: 153851 https://doi.org/10.1016/j.scitotenv.2022.153851
167
S Vieira, W H Lopez Pinaya, A Mechelli (2020). Introduction to machine learning. In: Mechelli A, Vieira S, eds. Machine Learning Methods and Applications to Brain Disorders. London: Academic Press, 1–20
168
A M J C Wadoux , B Minasny , A B Mcbratney . (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210: 103359 https://doi.org/10.1016/j.earscirev.2020.103359
169
V M Wagh , D B Panaskar , A A Muley . (2017). Estimation of nitrate concentration in groundwater of Kadava River basin-Nashik district, Maharashtra, India by using artificial neural network model. Modeling Earth Systems and Environment, 3(1): 36 https://doi.org/10.1007/s40808-017-0290-3
170
D Wang , J Wu , Y Wang , Y Ji . (2020). Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: analysis, assessment, and management. Exposure and Health, 12(2): 307–322 https://doi.org/10.1007/s12403-019-00314-y
171
M X Wang , G D Liu , W L Wu , Y H Bao , W N Liu . (2006). Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN. Environmental Geology, 50(5): 637–644 https://doi.org/10.1007/s00254-006-0237-x
172
S R Wilson , M E Close , P Abraham , T S Sarris , L Banasiak , R Stenger , J Hadfield . (2020). Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning. Science of the Total Environment, 705: 135877 https://doi.org/10.1016/j.scitotenv.2019.135877
173
L Winkel , M Berg , M Amini , S J Hug , C Annette Johnson . (2008). Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geoscience, 1(8): 536–542 https://doi.org/10.1038/ngeo254
174
C Wu , C Fang , X Wu , G Zhu . (2020). Health-risk assessment of arsenic and groundwater quality classification using random forest in the Yanchi Region of Northwest China. Exposure and Health, 12(4): 761–774 https://doi.org/10.1007/s12403-019-00335-7
175
R Wu , E Alvareda , D Polya , G Blanco , P Gamazo . (2021). Distribution of groundwater arsenic in Uruguay using hybrid machine learning and expert system approaches. Water, 13(4): 527 https://doi.org/10.3390/w13040527
176
S X Wu , H T Wai , L Li , A Scaglione . (2018). A review of distributed algorithms for principal component analysis. Proceedings of the IEEE, 106(8): 1321–1340 https://doi.org/10.1109/JPROC.2018.2846568
177
Y XingB XueY LinX WuF FangP QiJ GuoX Zhou (2022). A cellphone-based colorimetric multi-channel sensor for water environmental monitoring. Frontiers of Environmental Science & Engineering. 16(12): 155
178
T Xu , A J Valocchi , M Ye , F Liang . (2017). Quantifying model structural error: efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model. Water Resources Research, 53(5): 4084–4105 https://doi.org/10.1002/2016WR019831
179
B Yadav , P K Gupta , N Patidar , S K Himanshu . (2019). Ensemble modelling framework for groundwater level prediction in urban areas of India. Science of the Total Environment, 712: 135539
180
J Yang , C Wang , B Jiang , H Song , Q Meng . (2021). Visual perception enabled industry intelligence: state of the art, challenges and prospects. IEEE Transactions on Industrial Informatics, 17(3): 2204–2219 https://doi.org/10.1109/TII.2020.2998818
181
Q Yang , J Zhang , Z Hou , X Lei , W Tai , W Chen , T Chen . (2017). Shallow groundwater quality assessment: use of the improved Nemerow pollution index, wavelet transform and neural networks. Journal of Hydroinformatics, 19(5): 784–794 https://doi.org/10.2166/hydro.2017.224
182
Z M Yaseen . (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: review, challenges and solutions. Chemosphere, 277: 130126 https://doi.org/10.1016/j.chemosphere.2021.130126
183
M I Yesilnacar , E Sahinkaya , M Naz , B Ozkaya . (2008). Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology, 56(1): 19–25 https://doi.org/10.1007/s00254-007-1136-5
184
A D Yetis , M I Yesilnacar , M Atas . (2021). A machine learning approach to dental fluorosis classification. Arabian Journal of Geosciences, 14(2): 95 https://doi.org/10.1007/s12517-020-06342-2
185
H Yoon , Y Hyun , K K Lee . (2007). Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks. Journal of Hydrology, 335(1–2): 68–77 https://doi.org/10.1016/j.jhydrol.2006.11.001
186
M Yu , X Xing , L Xing , Z Zhao , C Li . (2022). Assessment of karst water quality and analysis of pollution sources with a projection pursuit algorithm in Jinan spring area, China. Water Practice & Technology, 17(3): 763–783 https://doi.org/10.2166/wpt.2022.011
187
X Yu , T Cui , J Sreekanth , S Mangeon , R Doble , P Xin , D Rassam , M Gilfedder . (2020). Deep learning emulators for groundwater contaminant transport modelling. Journal of Hydrology, 590: 125351 https://doi.org/10.1016/j.jhydrol.2020.125351
188
H A Zaqoot , M Hamada , S Miqdad . (2018). A comparative study of ANN for predicting nitrate concentration in groundwater wells in the southern area of Gaza Strip. Applied Artificial Intelligence, 32(7–8): 727–744 https://doi.org/10.1080/08839514.2018.1506970
189
N Zeydalinejad . (2022). Artificial neural networks vis-a-vis MODFLOW in the simulation of groundwater: a review. Modeling Earth Systems and Environment, 8(3): 2911–2932 https://doi.org/10.1007/s40808-022-01365-y
190
Y Zhang , R Jia , J Wu , H Wang , Z Luo . (2022). Uncertain in WQI-based groundwater quality assessment methods: a case study in east of Beijing, China. Environmental Earth Sciences, 81(7): 202 https://doi.org/10.1007/s12665-022-10311-1
191
Y Zhang , M Lei , K Li , T Ju . (2023). Spatial prediction of soil contamination based on machine learning: a review. Frontiers of Environmental Science & Engineering, 17(8): 93 https://doi.org/10.1007/s11783-023-1693-1
192
Z Zhang, D Wu (2019). An imbalanced data classification method based on probability threshold Bagging. Computer Engineering and Science, 41(6): 1086–1094 (in Chinese)
193
Y Zheng, F Liu, H P Hsieh (2013). U-air: When urban air quality inference meets big data. New York: Association for Computing Machinery, 1436–1444
194
S Zhong , K Zhang , M Bagheri , J G Burken , A Gu , B Li , X Ma , B L Marrone , Z J Ren , J Schrier . et al.. (2021). Machine learning: new ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19): 12741–12754 https://doi.org/10.1021/acs.est.1c01339
195
P Zhou , L Zhong , Y Zhang , S Snowling , J Barclay . (2023). Online machine learning for stream wastewater influent flow rate prediction under unprecedented emergencies. Frontiers of Environmental Science & Engineering, 17(12): 152 https://doi.org/10.1007/s11783-023-1752-7
196
W Zhou, M Long (2020). Secure transmission scheme for environmental monitoring data based on blockchain. Computer Science, 47(1): 315–320 (in Chinese)
197
M Zounemat-Kermani , O Batelaan , M Fadaee , R Hinkelmann . (2021). Ensemble machine learning paradigms in hydrology: a review. Journal of Hydrology, 598: 126266 https://doi.org/10.1016/j.jhydrol.2021.126266