Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives
Shan-Shan Yang1, Wei-Min Wu2(), Federica Bertocchini3, Mark Eric Benbow4, Suja P. Devipriya5, Hyung Joon Cha6, Bo-Yu Peng7, Meng-Qi Ding1, Lei He1, Mei-Xi Li1, Chen-Hao Cui1, Shao-Nan Shi1, Han-Jun Sun1, Ji-Wei Pang8, Defu He9, Yalei Zhang7, Jun Yang10, Deyi Hou11, De-Feng Xing1, Nan-Qi Ren1, Jie Ding1, Craig S. Criddle2
1. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China 2. Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA 3. Plasticentropy, rue Thiers 28, Reims 51100, France 4. Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA 5. School of Environmental Studies, Cochin University of Science and Technology, Kochi 682022, India 6. Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea 7. School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China 8. China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China 9. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 10. Research Institute for Frontier Science, Beihang University, Beijing 100191, China 11. School of Environment, Tsinghua University, Beijing 100084, China
● Insect damaging and penetrating plastic materials has been observed since 1950s.
● Biodegradation of plastics by insects has become hot research frontiers.
● All major plastics can be biodegraded with half-live on hourly basis.
● The biodegradation is performed by the insect hosts together with gut microbiota.
● Future perspectives focus on biodegradation mechanisms and potential applications.
Insects damaging and penetrating plastic packaged materials has been reported since the 1950s. Radical innovation breakthroughs of plastic biodegradation have been initiated since the discovery of biodegradation of plastics by Tenebrio molitor larvae in 2015 followed by Galleria mellonella in 2017. Here we review updated studies on the insect-mediated biodegradation of plastics. Plastic biodegradation by insect larvae, mainly by some species of darkling beetles (Tenebrionidae) and pyralid moths (Pyralidae) is currently a highly active and potentially transformative area of research. Over the past eight years, publications have increased explosively, including discoveries of the ability of different insect species to biodegrade plastics, biodegradation performance, and the contribution of host and microbiomes, impacts of polymer types and their physic-chemical properties, and responsible enzymes secreted by the host and gut microbes. To date, almost all major plastics including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PUR), and polystyrene (PS) can be biodegraded by T. molitor and ten other insect species representing the Tenebrionidae and Pyralidae families. The biodegradation processes are symbiotic reactions or performed by synergistic efforts of both host and gut-microbes to rapidly depolymerize and biodegrade plastics with hourly half-lives. The digestive ezymens and bioreagents screted by the insects play an essential role in plasatic biodegradation in certain species of Tenebrionidae and Pyralidae families. New research on the insect itself, gut microbiomes, transcriptomes, proteomes and metabolomes has evaluated the mechanisms of plastic biodegradation in insects. We conclude this review by discussing future research perspectives on insect-mediated biodegradation of plastics.
Attenuated total reflection flourier transformed infrared spectroscopy
CM
Chlorinated methane
DEG
Differentially expressed genes
DSC
Differential scanning calorimetry
DMF
Dimethylformamide
EPS
Expanded polystyrene
EVA
Ethylene-vinyl acetate
GO
Graphere oxide
FTIR
Fourier transform infrared spectroscopy
GC-MS
Gas chromatography mass spectrometry
GC-TOF-MS
Gas chromatography–time-of-flight mass spectrometry
GPC
Gel permeation chromatography
HCW
Honeycomb wax
HDPE
High-density polyethylene
HFIP
1,1,1,3,3-hexafluoroisopropanol
1H MNR
Proton nuclear magnetic resonance
HT-GPC
High temperature-gel permeation chromatography
KEGG
Kyoto encyclopaedia of genes and genomes
LB
Luria-Bertaini medium
LCFBM
Liquid carbon free basal medium
LD
Limited-extent depolymerization
LDPE
Low density polyethylene
LLDPE
Liner low density polyethylene
Mn
Number-average molecular weight
MPs
Microplastics
Mw
Weight-average molecular weight
MWD
Molecular weight distribution
Mz
Size-average molecular weight
MW
Molecular weight
OAT
Oatmeal
PCA
Principal component analysis
PCoA
Principal coordinate analysis
PBAT
Poly(butylene adipate-co-terephthalate)
PDI
Polydispersity index
PE
Polyethylene
PET
Polyethylene terephthalate
PLA
Polylactic acid
PP
Polypropylene
PS
Polystyrene
PUR
Polyurethane
PVC
Polyvinyl chloride
Py-GCMS
Pyrolyzer-gas chromatography mass spectrometry
ROS
Reactive oxygen species
RT-PCR
Real-time polymerase chain reaction
SDS
Sodium dodecyl sulfate (SDS)
SEM
Scanning electron microscope
TCB
1,2,4-trichlorobenzene
TGA
Thermogravimetric analysis
THF
Tetrahydrofuran
WB
Wheat bran
WCA
Wet contact angle
XPS
X-ray-photoelectron spectroscopy
SR
Survival rate
1
H S Abdulhay. (2020). Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian Journal of Agriculture and Biology, 8(2): 201–206 https://doi.org/10.35495/ajab.2019.11.515
2
M G Aboelkheir, L Y Visconte, G E Oliveira, R D Filho, F G Souza. (2019). The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Science of the Total Environment, 649: 1075–1082 https://doi.org/10.1016/j.scitotenv.2018.08.228
3
P Agamuthu (2018). Marine debris, plastics, microplastics and nano-plastics: What next? Waste Management & Research, 36(10): 869–871 10.1177/0734242X18796770
4
A C Albertsson. (1978). Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. Journal of Applied Polymer Science, 22(12): 3419–3433 https://doi.org/10.1002/app.1978.070221207
5
A C Albertsson. (1980). The shape of the biodegradation curve for low and high density polyethenes in prolonged series of experiments. European Polymer Journal, 16(7): 623–630 https://doi.org/10.1016/0014-3057(80)90100-7
6
S S Ali, T Elsamahy, D C Zhu, J Z Sun. (2023). Biodegradability of polyethylene by efficient bacteria from the guts of plastic-eating waxworms and investigation of its degradation mechanism. Journal of Hazardous Materials, 443: 130287 https://doi.org/10.1016/j.jhazmat.2022.130287
7
R Al-Tohamy, S S Ali, M Zhang, M Sameh, Y A G Zahoor, D Mahmoud, N Waleed, S R Okasha, J Z Sun. (2023). Can wood-feeding termites solve the environmental bottleneck caused by plastics? A critical state-of-the-art review. Journal of Environmental Management, 326: 116606 https://doi.org/10.1016/j.jenvman.2022.116606
8
R An, C G Liu, J Wang, P Y Jia. (2023). Recent advances in degradation of polymer plastics by insects inhabiting microorganisms. Polymers, 15(5): 1307 https://doi.org/10.3390/polym15051307
9
Y Bai, C Li, M Yang, S Liang. (2018). Complete mitochondrial genome of the dark mealworm Tenebrio obscurus Fabricius (Insecta: Coleoptera:, Tnebrionidae). Mitochondrial DNA. Part B, Resources, 3(1): 171–172 https://doi.org/10.1080/23802359.2018.1437800
10
Y Baldera-Moreno, V Pino, A Farres, A Banerjee, F Gordillo, R Andler. (2022). Biotechnological aspects and mathematical modeling of the biodegradation of plastics under controlled conditions. Polymers, 14(3): 1–22 https://doi.org/10.3390/polym14030375
11
F Bertocchini, C F Arias (2023). Why have we not yet solved the challenge of plastic degradation by biological means? PLoS Biology, 21(3): e3001979 10.1371/journal.pbio.3001979
12
P Billen, L Khalifa, F Van Gerven, S Tavernier, S Spatari. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Science of the Total Environment, 735: 139521 https://doi.org/10.1016/j.scitotenv.2020.139521
13
P Bombelli, C J Howe, F Bertocchini. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8): R292–R293 https://doi.org/10.1016/j.cub.2017.02.060
14
A Boschi, C Scieuzo, R Salvia, C F Arias, R P Perez, F Bertocchini, P Falabella (2023). Beyond microbial biodegradation: plastic degradation by Gealleria mellonella. Journal of Polymers and the Environment, 10.1007/s10924-023-03084-6
15
F Bovera, G Piccolo, L Gasco, S Marono, R Loponte, G Vassalotti, V Mastellone, P Lombardi, Y A Attia, A Nizza. (2015). Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. British Poultry Science, 56: 569–575 https://doi.org/10.1080/00071668.2015.1080815
16
M E Bowden (1997). Chemical Achievers: the Human Face of the Chemical Sciences. Philadelphia: Chemical Heritage Foundation. ISBN 9780941901123
17
M Boźek, B Hanus-Lorenz, J Rybak. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17: 00011 https://doi.org/10.1051/e3sconf/20171700011
18
A M Brandon, S H El Abbadi, U A Ibekwe, Y M Cho, W M Wu, C S Criddle. (2020). Fate of hexabromocyclododecane (HBCD), a common flame retardant, in polystyrene-degrading mealworms: elevated HBCD levels in egested polymer but no bioaccumulation. Environmental Science & Technology, 54(1): 364–371 https://doi.org/10.1021/acs.est.9b06501
19
A M Brandon, S H Gao, R Tian, D Ning, S S Yang, J Z Zhou, W M Wu, C S Criddle. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52(11): 6526–6533 https://doi.org/10.1021/acs.est.8b02301
20
A M Brandon, A M Garcia, N A Khlystov, W M Wu, C S Criddle. (2021). Enhanced bioavailability and microbial biodegradation of polystyrene in an enrichment derived from the gut microbiome of Tenebrio molitor (mealworm larvae). Environmental Science & Technology, 55(3): 2027–2036 https://doi.org/10.1021/acs.est.0c04952
21
A E Brown. (1945). The problem of fugal growth on synthetic resins. Modern Plastics, 23: 189
22
A Brune. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews. Microbiology, 12(3): 168–180 https://doi.org/10.1038/nrmicro3182
23
B S Burd, C U Mussagy, J D L Singulani, J L Tanaka, M Scontri, G S A P Brasil, N B Guerra, P A Assato, P D S Abreu, C C Bebber. et al.. (2023). Galleria mellonella larvae as an alternative to low-density polyethylene and polystyrene biodegradation. Journal of Polymers and the Environment, 31(3): 1232–1241 https://doi.org/10.1007/s10924-022-02696-8
24
B Calmont, F Soldati (2008). Ecologie et biologie de Tenebrio opacus Duftschmid, 1812 Distribution et détermination des espèces françaises du genre Tenebrio Linnaeus, 1758 (Coleoptera: Tenebrionidae). R A R E, T XVII (3): 81–87
25
B J Cassone, H C Grove, O Elebute, S M P Villanueva, C M R LeMoine. (2020). Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proceeding of the Royal Society B-Biological Sciences, 287: 20200112 https://doi.org/10.1098/rspb.2020.0112
26
B J Cassone, H C Grove, N Kurchaba, P Geronimo, C M R LeMoine. (2022). Fat on plastic: metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). Journal of Hazardous Materials, 425: 127862 https://doi.org/10.1016/j.jhazmat.2021.127862
27
A Chalup, M M Ayup, A C M Garzia, A Malizia, E Martin, Cristóbal R De, A Galindo-Cardona. (2018). First report of the lesser wax moth Achroia grisella F. (Lepidoptera: Pyralidae) consuming polyethylene (silo-bag) in northwestern Argentina. Journal of Apicultural Research, 57(4): 569–571 https://doi.org/10.1080/00218839.2018.1484614
28
A Chamas, H Moon, J J Zheng, Y Qiu, T Tabassum, J H Jang, M Abu-Omar, S L Scott, S W Suh. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9): 3494–3511 https://doi.org/10.1021/acssuschemeng.9b06635
29
Z Chen, Y L Zhang, R Z Xing, C Rensing, J Lü, M L Chen, S N Zhong, S G Zhou. (2023). Reactive oxygen species triggered oxidative degradation of polystyrene in the gut of superworms (Zophobas atratus Larvae). Environmental Science & Technology, 57(20): 7867–7874 https://doi.org/10.1021/acs.est.3c00591
30
L X Cheng, Y J Tong, Y C Zhao, Z B Sun, X P Wang, F Z Ma, M Bai. (2022). Study on the relationship between richness and morphological diversity of higher taxa in the darkling beetles (Coleoptera: Tenebrionidae). Diversity, 14(1): 60 https://doi.org/10.3390/d14010060
31
X T Cheng, M L Xia, Y Yang. (2023). Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms. Journal of Hazardous Materials, 448: 130940 https://doi.org/10.1016/j.jhazmat.2023.130940
32
L D Cline. (1978). Penetration of seven common flexible packaging materials by larvae and adults of eleven species of stored product insects. Journal of Economic Entomology, 71(5): 726–729 https://doi.org/10.1093/jee/71.5.726
33
C Cucini, R Funari, D Mercati, F Nardi, A Carapelli, L Marri. (2022). Polystyrene shaping effect on the enriched bacterial community from the plastic-eating Alphitobius diaperinus (Insecta: Coleaoptera). Symbiosis, 86(3): 305–313 https://doi.org/10.1007/s13199-022-00847-y
34
C Cucini, C Leo, M Vitale, F Frati, A Carapelli, F Nardi (2020). Bacterial and fungal diversity in the gut of polystyrene-fed Alphitobius diaperinus (Insecta: Coleoptera). Animal Genetics, 17–18: 200109
35
A L Dawson, S Kawaguchi, C K King, K A Townsend, R King, W M Huston, S M B Nash. (2018). Thurning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications, 9(1): 1001 https://doi.org/10.1038/s41467-018-03465-9
36
Flippis F De, M Bonelli, D Bruno, G Sequino, A Montali, M Reguzzoni, E Pasolli, D Savy, S Cangemi, V Cozzolino. et al.. (2023). Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. Microbiome, 11(1): 205 https://doi.org/10.1186/s40168-023-01649-0
37
J L Despins, E C Turner, D G Pfeiffer. (1991). Evaluation of methods to protect poultry house insulation from infestations by lesser mealworm (Colleopera: Tenerbronidae). Journal of Agricultural Entomology, 8: 209–217
38
M Q Ding, S S Yang, J Ding, Z R Zhang, Y L Zhao, W Dai, H J Sun, L Zhao, D F Xing, N Q Ren. et al.. (2023). Gut microbiome associating with carbon and nitrogen metabolism during biodegradation of polyethene in Tenebrio larvae with crop residues as co-diets. Environmental Science & Technology, 57(8): 3031–3041 https://doi.org/10.1021/acs.est.2c05009
39
M Q Ding, J Ding, Z R Zhang, M X Li, C H Cui, J W Pang, D F Xing, N Q Ren, W M Wu, S S Yang. (2024). Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: effects on their physiology. Journal of Environmental Management, 358: 120832 https://doi.org/10.1016/j.jenvman.2024.120832
40
K Dunn. (2021). Antibiotic effects on Tenebrio molitor ingestion of Styrofoam. International Journal of High School Research, 3(4): 37–41 https://doi.org/10.36838/v3i4.8
41
P Engel, N A Moran. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37(5): 699–735 https://doi.org/10.1111/1574-6976.12025
42
M A C Fabreag, J A Familara. (2019). Biodegradation of expanded polystyrene (EPS) (Styrofoam) block as feedstock to Tribolium castaneum (red flour beetle) imago: A promising plastic-degrading process. World News of Natural Sciences, 24: 145–156
43
L Feng, W Wang, J Cheng, Y Ren, G Zhao, C Gao, Y Tang, X Liu, W Han, X Peng. et al.. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America, 104(13): 5602–5607 https://doi.org/10.1073/pnas.0609650104
44
S Fudlosid, M W Ritchie, M J Muzzatti, J E Allison, J Provencher, H A MacMillan. (2022). Ingestion of microplastic fibres, but not microplastic beads, impacts growth rates in the tropical house gricket Gryllodes Sigillatus. Frontiers in Physiology, 13: 871149 https://doi.org/10.3389/fphys.2022.871149
45
L Gallitelli, A Zauli, M Scalici. (2022). Another one bites the plastics. Ecology and Evolution, 12(9): e9332 https://doi.org/10.1002/ece3.9332
46
J Gao, L W Wang, W M Wu, J Luo, D Y Hou. (2024). Microplastic generation from field-collected plastic gauze: unveiling the aging processes. Journal of Hazardous Materials, 467: 133615 https://doi.org/10.1016/j.jhazmat.2024.133615
47
I Gaytán, A Sánchez-Reyes, M Burelo, M Vargas-Suárez, I Liachko, M Press, S Sullivan, J Cruz-Gómez, H Loza-Tavera. (2020). Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Frontiers in Microbiology, 10: 2986 https://doi.org/10.3389/fmicb.2019.02986
48
F A Genta, R J Dillon, W R Terra, C Ferreira. (2006). Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. Journal of Insect Physiology, 52(6): 593–601 https://doi.org/10.1016/j.jinsphys.2006.02.007
49
P D Gerhardt, D L Lindgren. (1954). Penetration of various packaging films by common stored-product insects 1. Journal of Economic Entomology, 47(2): 282–287 https://doi.org/10.1093/jee/47.2.282
50
D Gola, P K Tyagi, A Arya, N Chauhan, M Agarwal, S K Singh, S Gola. (2021). The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management, 16: 100552 https://doi.org/10.1016/j.enmm.2021.100552
51
P M Gopinath, A S Darekar, S Kanimozhi, A Mukherjee, N Chandrasekaran. (2022). Female mosquito-a potential vector for transporting plastic residues to humans. Chemosphere, 301: 134666 https://doi.org/10.1016/j.chemosphere.2022.134666
52
J H Hahladakis, C A Velis, R Weber, E Iacovidou, P Purnell. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal, and recycling. Journal of Hazardous Materials, 344: 179–199 https://doi.org/10.1016/j.jhazmat.2017.10.014
53
L He, S S Yang, J Ding, C X Chen, F Yang, Z L He, J W Pang, B Y Peng, Y L Zhang, D F Xing. et al.. (2024a). Biodegradation of polyethylene terephthalate by Tenebrio molitor: insights for polymer chain size, gut metabolome and host genes. Journal of Hazardous Materials, 465: 133446 https://doi.org/10.1016/j.jhazmat.2024.133446
54
L He, J Ding, S S Yang, Y N Zang, J W Pang, D F Xing, L Y Zhang, N Q Ren, W M Wu. (2024b). Molecular-weight-dependent degradation of plastics: deciphering host−microbiome synergy biodegradation of high-hurity polypropylene microplastics by mealworms. Environmental Sciece & Technology, 58: 6647–6658 https://doi.org/10.1021/acs.est.3c06954
55
L He, S S Yang, J Ding, Z L He, J W Pang, D F Xing, L Zhao, H S Zheng, N Q Ren, W M Wu. (2023). Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. Journal of Hazardous Materials, 457: 131759 https://doi.org/10.1016/j.jhazmat.2023.131759
56
H A Highland, R Wilsons. (1981). Resistance of polymer films to penetration by lesser grain borer and description of a device for measuring resistance. Journal of Economic Entomology, 74(1): 67–70 https://doi.org/10.1093/jee/74.1.67
57
J Hu, D He, X Zhang, X Li, Y Chen, W Gao, Y Zhang, Y S Ok, Y Luo. (2022). National-scale distribution of micro(meso)plastics in farmland soils across China: Implications for environmental impacts. Journal of Hazardous Materials, 424: 127283 https://doi.org/10.1016/j.jhazmat.2021.127283
58
H Inderthal, S L Tai, S T L Harrison. (2021). Non-hydrolyzable plastics: an interdisciplinary look at plastic bio-oxidation. Trends in Biotechnology, 39(1): 12–23 https://doi.org/10.1016/j.tibtech.2020.05.004
59
S Jiang, T Su, J Zhao, Z Wang. (2021). Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae. Frontiers in Bioengineering and Biotechnology, 9: 736062 https://doi.org/10.3389/fbioe.2021.736062
60
S S Kesti, S C Thimmappa. (2019). First report on biodegradation of low density polyethylene by rice moth larvae, Corcyra cephalonica (Stainton). Holistic Approach to Environment, 4(4): 79–83 https://doi.org/10.33765/thate.9.4.2
61
H R Kim, H M Lee, H C Yu, E Jeon, S Lee, J Li, D H Kim. (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environmental Science & Technology, 54(11): 6987–6996 https://doi.org/10.1021/acs.est.0c01495
62
S Y Kim, H G Kim, S H Song, N J Kim. (2015). Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars. International Journal of Industrial Entomology, 30(2): 45–49 https://doi.org/10.7852/ijie.2015.30.2.45
63
H G Kong, H H Kim, J Chung, J Jun, S Lee, H M Kim, S Jeon, S G Park, J Bhak, C M Ryu. (2019). The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Reports, 26(9): 2451–2464.e5 https://doi.org/10.1016/j.celrep.2019.02.018
N P Kristensen, M J Scoble, O Karsholt. (2007). Lepidoptera phylogeny and systematics: The state of inventorying moth and butterfly diversity. Zootaxa, 1668(1): 699–747 https://doi.org/10.11646/zootaxa.1668.1.30
66
A Kumar, C M Kalleshwaraswamy, R Sharma, P Sharma, A Poonia. (2022). Biodegradation of plastic using termites and their gut microbiota: a mini review. IOP Conference Series. Earth and Environmental Science, 1057(1): 012016 https://doi.org/10.1088/1755-1315/1057/1/012016
67
H Kundungal, M Gangarapu, S Sarangapani, A Patchaiyappan, S P Devipriya. (2019a). Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environmental Science and Pollution Research International, 26(18): 18509–18519 https://doi.org/10.1007/s11356-019-05038-9
68
H Kundungal, M Gangarapu, S Sarangapani, A Patchaiyappan, S P Devipriya. (2019b). Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environmental Technology, 42(5): 717–730 https://doi.org/10.1080/09593330.2019.1643925
69
H Kundungal, K Synshiang, S P Devipriya. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: an insight to the ability of polystyrene fed larvae to complete its life cycle. Environmental Challeges, 4: 100083 https://doi.org/10.1016/j.envc.2021.100083
70
H M Lee, H R Kim, E Jeon, H C Yu, S Lee, J Li, D H Kim. (2020). Evaluation of the biodegradation efficiency of four various types of plastics by Pseudomonas aeruginosa isolated from the gut extract of superworms. Microorganisms, 8(9): 1341 https://doi.org/10.3390/microorganisms8091341
71
T Leejarkpai, U Suwanmanee, Y Rudeekit, T Mungcharoen. (2011). Biodegrable kinetics of plastics under controlled composting conditions. Waste Management, 31(6): 1153–1161 https://doi.org/10.1016/j.wasman.2010.12.011
72
A Leicht, H Masuda (2022). Ingestion of Nylon 11 polymers by the mealworm (Tenebrio molitor) beetle and subsequent enrichment of monomer-metabolizing bacteria in fecal microbiome. Frontiers in Bioscience (Elite Edition), 15(2): 11 (Elite Ed) 10.31083/j.fbe1502011
73
C M R LeMoine, H C Grove, C M Smith, B J Cassone. (2020). A very hungry caterpillar: polyethylene metabolism and lipid homeostasis in larvae of the greater wax moth (Galleria mellonella). Environmental Science & Technology, 54(22): 14706–14715 https://doi.org/10.1021/acs.est.0c04386
74
H A Leslie, M J M van Velzen, S H Brandsma, A D Vethaak, J J Garcia-Vallejo, M H Lamoree. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163: 107199 https://doi.org/10.1016/j.envint.2022.107199
75
Y Li, L Tao, Q Wang, F B Wang, G Li, M Y Song. (2023). Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. Environmental Health, 1(4): 249–257 https://doi.org/10.1021/envhealth.3c00052
76
J W Liu, J Y Liu, B Xu, A M Xu, S X Cao, R Wei, J Zhou, M Jiang, W L Dong. (2022a). Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. Chemosphere, 304: 135263 https://doi.org/10.1016/j.chemosphere.2022.135263
77
Z M Liu, J Zhao, K Lu, Z Y Wang, L Yin, H Zheng, X Wang, L Mao, B S Xing. (2022b). Biodegradation of graphere oxide by insects (Tenebrio molitor larvae): role of gut microbiome and enzymes. Environmental Science & Technology, 56(23): 16737–16747 https://doi.org/10.1021/acs.est.2c03342
78
E J López-Naranjo, L M Alzate-Gaviria, G Hernández-Zárate, J Reyes-Trujeque, C V Cupul-Manzano, R H Cruz-Estrada. (2013). Effect of biological degradation by termites on the flexural properties of pinewood residue/recycled high-density polyethylene composites. Journal of Applied Polymer Science, 128(5): 2595–2603 https://doi.org/10.1002/app.38212
79
C Lott, A Eich, D Makarow, B Unger, M van Eekert, E Schuman, M S Reinach, M T Lasut, M Weber. (2021). Half-life of biodegradable plastics in the marine environment depends on material, habitat, and climate zone. Frontiers of Materials Science, 8: 662074
80
H Lou, R Fu, T Y Long, B Z Fan, C Guo, L L Li, J Zhang, G C Zhang. (2022). Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Science of the Total Environment, 853: 158604 https://doi.org/10.1016/j.scitotenv.2022.158604
81
Y Lou, P Ekaterina, S S Yang, B Lu, B Liu, N Q Ren, P F X Corvini, D F Xing. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environmental Science & Technology, 54(5): 2821–2831 https://doi.org/10.1021/acs.est.9b07044
82
N Lucas, C Bienaime, C Belloy, M Queneudec, F Silvestre, J E Nava-Saucedo. (2008). Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 73(4): 429–442 https://doi.org/10.1016/j.chemosphere.2008.06.064
83
L Luo, Y Wang, H Guo, Y Yang, N Qi, X Zhao, S Gao, A Zhou. (2021). Biodegradation of foam plastics by Zophobas atratus larvae (Coleoptera: Tenebrionidae) associated with changes of gut digestive enzymes activities and microbiome. Chemosphere, 282: 131006 https://doi.org/10.1016/j.chemosphere.2021.131006
84
E A Mahmoud, O E A Al-Hagar, M F Abd El-Aziz. (2021). Gamma radiation effect on the midgut bacteria of Plodia interpunctella and its role in organic wastes biodegradation. International Journal of Tropical Insect Science, 41(1): 261–272 https://doi.org/10.1007/s42690-020-00203-x
85
T Mamtimin, H W Han, A Khan, P Y Feng, Q Zhang, X B Ma, Y T Fang, P Liu, S Kulshrestha, T Shigaki. et al.. (2023). Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. Microbiome, 11(1): 98 https://doi.org/10.1186/s40168-023-01550-w
86
T Matjašič, T Simčič, N Medvešček, O Bajt, T Dreo, N Mori. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752: 141959 https://doi.org/10.1016/j.scitotenv.2020.141959
87
S J Miao, Y L Zhang (2010). Feeding and degradation effect on plastic of Zophobas morio. Journal of Environmenal Entomology, 32: 435–444 (in Chinese)
88
K Min, J D Cuiffi, R T Mathers. (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11(1): 727 https://doi.org/10.1038/s41467-020-14538-z
89
A S Navlekar, E Osuji, D L Carr. (2023). Gut microbial communities in mealworms and Idian meal moth larvae respond differently to plastics degradation. Journal of Polymers and the Environment, 31(6): 2434–2447 https://doi.org/10.1007/s10924-023-02773-6
N Nukmal, S Puspita, M Kanedi. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). Online Journal of Biological Sciences, 18(1): 24–28 https://doi.org/10.3844/ojbsci.2018.24.28
92
I Nyamjav, Y J Jang, Y E Lee, S Lee. (2023a). Biodegradation of polyvinyl chloride by Citrobacter koseri isolated from superworms Zophobas atratus larvae). Frontiers in Microbiology, 14: 1175249 https://doi.org/10.3389/fmicb.2023.1175249
93
I Nyamjav, Y J Jang, N Park, Y E Lee, S Lee. (2023b). Physicochemical and structural evidence that Bacillus cereus isolated from the gut of waxworms (Galleria mellonella larvae) biodegrades polypropylene efficiently in vitro. Journal of Polymers and the Environment, 31(10): 4274–4287 https://doi.org/10.1007/s10924-023-02878-y
94
J M Ort, J Parrado, J A Pascual, A Orts, J Cuartero, M T M Ros. (2023). Polyurethane foam residue biodegradation through the Tenebrio molitor digestive tract: microbial communities and enzymatic activity. Polymers, 15: 204
95
Y Otake, T Kobayashi, H Asabe, N Murakami, K Ono. (1995). Biodegradation of low-density polyethylene, polystyrene, polyvinyl-chloride, and urea-formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science, 56(13): 1789–1796 https://doi.org/10.1002/app.1995.070561309
96
B Y Peng, Z Chen, J Chen, H Yu, X Zhou, C S Criddle, W M Wu, Y Zhang. (2020b). Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 145: 106106 https://doi.org/10.1016/j.envint.2020.106106
97
B Y Peng, Z Chen, J Chen, X Zhou, W M Wu, Y Zhang. (2021). Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management. Journal of Hazardous Materials, 416: 125803 https://doi.org/10.1016/j.jhazmat.2021.125803
98
B Y Peng, Y Li, R Fan, Z Chen, J Chen, A M Brandon, C S Criddle, Y Zhang, W M Wu. (2020a). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266: 115206 https://doi.org/10.1016/j.envpol.2020.115206
99
B Y Peng, Y Su, Z Chen, J Chen, X Zhou, M E Benbow, C S Criddle, W M Wu, Y Zhang. (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science & Technology, 53(9): 5256–5265 https://doi.org/10.1021/acs.est.8b06963
100
B Y Peng, Y Su, X Zhang, J J Sun. (2023a). Unveiling the residual plastics and produced toxicity during biodegradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics by mealworms (Larvae of Tenebrio molitor). Journal of Hazardous Materials, 452: 131326 https://doi.org/10.1016/j.jhazmat.2023.131326
101
B Y Peng, Y Sun, P Li, S R Yu, Y Z Xu, J B Chen, X F Zhou, W M Wu, Y L Zhang. (2023c). Biodegradation of polyvinyl chloride, polystyrene, and polylactic acid microplastics in Tenebrio molitor larvae: physiological responses. Journal of Environmental Management, 345: 118818 https://doi.org/10.1016/j.jenvman.2023.118818
102
B Y Peng, Y Sun, Z Y Wu, J B Chen, Z Shen, X F Zhou, W M Wu, Y L Zhang. (2022a). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 367: 132987 https://doi.org/10.1016/j.jclepro.2022.132987
103
B Y Peng, Y Sun, S Z Xiao, J B Chen, X F Zhou, W M Wu, Y L Zhang. (2022b). Influence of polymer size on polystyrene biodegradation in mealworms (Tenebrio molitor): responses of depolymerization pattern, gut microbiome, and metabolome to polymers with low to ultrahigh molecular weight. Environmental Science & Technology, 56(23): 17310–17320 https://doi.org/10.1021/acs.est.2c06260
104
B Y Peng, S Z Xiao, Y Sun, Y R Liu, J B Chen, X F Zhou, W M Wu, Y L Zhang. (2023d). Unveiling fragmentation of plastic particles during biodegradation of polystyrene and polyethylene foams in mealworms: highly sensitive detection and digestive modeling prediction. Environmental Science & Technology, 57(40): 15099–15111 https://doi.org/10.1021/acs.est.3c04406
105
B Y Peng, Y Z Xu, Y Sun, S Z Xiao, J J Sun, Z Shen, J B Chen, X F Zhou, Y L Zhang. (2023e). Biodegradation of polyethylene (PE) microplastics by mealworm larvae: physiological responses, oxidative stress, and residual plastic particles. Journal of Cleaner Production, 402: 136831 https://doi.org/10.1016/j.jclepro.2023.136831
106
B Y Peng, X Zhang, Y Sun, Y R Liu, J B Chen, Z Shen, X F Zhou, Y L Zhang. (2023b). Biodegradation and carbon resource recovery of poly(butylene adipate-co-terephthalate) (PBAT) by mealworms: removal efficiency, depolymerization pattern, and microplastic residue. ACS Sustainable Chemistry & Engineering, 11(5): 1774–1784 https://doi.org/10.1021/acssuschemeng.2c05904
107
A Peydaei, H Bagheri, L Gurevich, N de Jonge, J L Nielsen. (2020). Impact of polyethylene on salivary glands proteome in Galleria melonella. Comparative Biochemistry and Physiology D-genomics & proteomics, 34: 100678
108
A Peydaei, H Bagheri, L Gurevich, N de Jonge, J L Nielsen. (2021). Mastication of polyolefins alters the microbial composition in Galleria mellonella. Environmental Pollution, 280: 116877 https://doi.org/10.1016/j.envpol.2021.116877
109
S W Przemieniecki, A Kosewska, S Ciesielski, O Kosewska. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256: 113265 https://doi.org/10.1016/j.envpol.2019.113265
110
S W Przemieniecki, A Kosewska, O Kosewska, C Purwin, K Lipiński, S Ciesielski. (2022). Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. Science of the Total Environment, 832: 154758 https://doi.org/10.1016/j.scitotenv.2022.154758
111
N X Qian, X Gao, X Q Lang, H P Deng, T M Bratu, Q X Chen, P Stapleton, B Z Yan, W Min. (2024). Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proceedings of the National Academy of Sciences of the United States of America, 121(3): e2300582121 https://doi.org/10.1073/pnas.2300582121
112
A Réjasse, J Waeytensb, A Deniset-Besseauc, N Crapartd, C Nielsen-Lerouxa, C Sandt. (2022). Plastic biodegradation: does Galleria mellonella larvae bio-assimilate polyethylene? A spectral histology approach using isotopic labelling and infrared microspectroscopy. Environmental Science & Technology, 56(1): 525–534 https://doi.org/10.1021/acs.est.1c03417
113
L Ren, L Men, Z Zhang, F Guan, J Tian, B Wang, J Wang, Y Zhang, W Zhang. (2019). Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11): 1941 https://doi.org/10.3390/ijerph16111941
114
J M Restrepo-Flórez, A Bassi, M R Thompson. (2014). Microbial degradation and deterioration of polyethylene: a review. International Biodeterioration & Biodegradation, 88: 83–90 https://doi.org/10.1016/j.ibiod.2013.12.014
115
M W Ritchie, A Cheslock, M P T Bourdages, B M Hamilton, J F Provencher, J E Allison, H A MacMillan. (2023). Quantifying microplastic ingestion, degradation and excretion in insects using fluorescent plastics quantifying microplastic ingestion, degradation and excretion in insects using fluorescent plastics. Conservation Physiology, 11(1): 1–10 https://doi.org/10.1093/conphys/coad052
116
M W Ritchie, J F Provencher, J E Allison, M J Muzzatti, H A MacMillan. (2024). The digestive system of a cricket pulverizes polyethylene microplastics down to the nanoplastic scale. Environmental Pollution, 343: 123168 https://doi.org/10.1016/j.envpol.2023.123168
117
J Riudavets, I Salas, M J Pons. (2007). Damage characteristics produced by insect pests in packaging film. Journal of Stored Products Research, 43(4): 564–570 https://doi.org/10.1016/j.jspr.2007.03.006
118
C I Rumbos, C G Athanassiou. (2021). The superworm, Zophobas morio (Coleoptera: Tenebrionidae): a ‘sleeping giant’ in nutrient sources. Journal of Insect Science, 21(2): 1–11 https://doi.org/10.1093/jisesa/ieab014
119
P A Rush, W H Hoffard (1989). White grubs. In: Cordell C E, Anderson R L, Hoffard W H, Landis T D, Smith Jr. R S, Toko H V, editors. Forest Nursery Pests. Agriculture Handbook 680. Washington, DC: USDA Forest Srrvice
120
C Sanchez. (2020). Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation. Biotechnology Advances, 40: 107501 https://doi.org/10.1016/j.biotechadv.2019.107501
121
J C Sanchez-Hernandez (2021). A toxicological perspective of plastic biodegradation by insect larvae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 248(Part C): 109117 10.1016/j.cbpc.2021.109117
122
C Sandt, J Waeytens, A Deniser-Besseau, Réjasse A Nielsen-Leroux. (2021). Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 256: 119841 https://doi.org/10.1016/j.saa.2021.119841
123
A Sanluis-Verdes, P Colomer-Vidal, F Rodriguez-Ventura, M Bello-Villarino, M Spinola-Amilibia, E Ruiz-Lopez, R Illanes-Vicioso, P Castroviejo, Cigliano R Aiese, M Montoya. et al.. (2022). Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nature Communications, 13(1): 5568 https://doi.org/10.1038/s41467-022-33127-w
124
B Serrano-Antón, F Rodríguez-Ventura, P Colomer-Vidal, R A Cigliano, C F Arias, F Bertocchini. (2023). The virtual microbiome: A computational framework to evaluate microbiome analyses. PLoS One, 18(2): e0280391 https://doi.org/10.1371/journal.pone.0280391
125
A A Shah, F Hasan, A Hameed, S Ahmed. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3): 246–265 https://doi.org/10.1016/j.biotechadv.2007.12.005
126
R Shah, T V Nguyen, A Marcora, A Ruffell, A Hulthen, K Pham, G Wijffels, C Paull, D J Beale. (2023). Exposure to polylatic acid induces oxidative stress and reduces the ceramide levels in larvae of greater wax moth (Galleria mellonella). Environmental Research, 220: 115137 https://doi.org/10.1016/j.envres.2022.115137
127
S A Slipinski, R A B Leschen, J F Lawrence (2011). Order Coleoptera Linnaeus, 1758. In: Zhang Z Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 203–208. Auckland: Magnolia Press, EP1830470 A1
128
L Soldati, G J Kergoat, A L Clamens, H Jourdan, R Jabbour-Zahab, F L Condamine. (2014). Integrative taxonomy of new Caledonian beetles: species delimitation and definition of the Uloma isoceroides species group (Coleoptera, Tenebrionidae, Ulomini), with the description of four new species. ZooKeys, 415: 133–167 https://doi.org/10.3897/zookeys.415.6623
129
Y Song, R Qiu, J Hu, X Li, X Zhang, Y Chen, W M Wu, D F He. (2020). Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Science of the Total Environment, 746: 141289 https://doi.org/10.1016/j.scitotenv.2020.141289
130
M Spínola-Amilibia, R Illanes-Vicioso, E Ruiz-López, P Colomer-Vidal, Rodriguez F Ventura, Perez R Peces, C F Arias, T Torroba, M Solà, E Arias-Palomo. et al.. (2023). Plastic degradation by insect hexamerins: near-atomic resolu-tion structures of the polyethylene degrading proteins from the wax worm saliva. Scince Advances, 38: eadi6813
131
L G Stehmeier, M M Francis, T R Jack, E Diegor, L Winsor, T A Abrajano Jr. (1999). Field and in viro edidence for in-situ bioremediation using compound-specific 13C/12C ratio monitoring. Organic Geochemistry, 30: 821–833 https://doi.org/10.1016/S0146-6380(99)00065-0
132
N E Stork (2018). How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63(1): 31–45 10.1146/annurev-ento-020117-043348
133
J R Sun, A Prabhu, S T N Aroney, C Rinke. (2022a). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in Styrofoam feeding trials. Microbial Genomics, 8(6): mgen000842 https://doi.org/10.1099/mgen.0.000842
134
Q H Sun, J Li, C Wang, A Q Chen, Y L You, S P Yang, H H Liu, G B Jiang, Y N Wu, Y S Li. (2022b). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering, 16(1): 1 https://doi.org/10.1007/s11783-021-1429-z
135
K M Tan, N M Fauzi, A S M Kassim, A H A Razak, KR Kamarudin. (2021). Isolation and identification of polystyrene degrading bacteria from Zophobas morio’s Gut. Walailak Journal of Science and Technology, 18(8): 9118 https://doi.org/10.48048/wjst.2021.9118
136
Z L Tang, T A Kuo, H H Liu. (2017). The study of the microbes degraded polystyrene. Advances in Technology and Innovation, 2(1): 13–17
137
C T Thamil. (2016). Isolation and identification of polyethylene biodegradation bacterial from the guts of plastic bags - eating damp wood termites. Life Science Archives (LSA), 2(2): 490–499
138
W R Tschinkel. (1981). Larval dispersal and cannibalism in a natural population of Zophobas atratus (Coleoptera: Tenebrionidae). Animal Behaviour, 29(4): 990–996 https://doi.org/10.1016/S0003-3472(81)80052-8
139
W R Tschinkel. (1984). Zophobas atratus (Fab.) and Z. rugipes Kirsch (Coleoptera: Tenebrionidae) are the same species. Coleopterists Bulletin, 38: 325–333
140
E D Tsochatzis, I E Berggreen, J Norgaard, G Theodoridis, T K Dalsgaard. (2021). Biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies evaluated by metabolic profiling using GC-TOF-MS. Chemosphere, 281: 130840 https://doi.org/10.1016/j.chemosphere.2021.130840
141
E D Tsochatzis, I E Berggreen, N P Vidal, L Roman, H Gika, M Corredig. (2022). Cellular lipids and protein alteration during biodegrdation of expanded polystyrene by mealworm larvae under different feeding conditions. Chemosphere, 300: 134420 https://doi.org/10.1016/j.chemosphere.2022.134420
142
E D Tsochatzis, J A Lopes, H Gika, G Theodoridis. (2020). Polystyrene biodegradation by Tenebrio molitor larvae: identification of generated substances using GC-MS untargeted screening method. Polymers, 13(1): 17 https://doi.org/10.3390/polym13010017
143
A K Urbanek, J Rybak, M Wrobel, K Leluk, A M Mironczuk. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262: 114281 https://doi.org/10.1016/j.envpol.2020.114281
144
A V Vasileva, I V Medvedeva, N M Kostyukova, M N Mukminov, E A Shuralev. (2018). Engenieering technology in plastic biodegradation by large bee moth larvae depends on the type of polyethylene. International Journal of Engineering Science, 7: 215–218
145
C Q Wang, D O’Connor, L W Wang, W M Wu, J Luo, D Y Hou. (2022a). Microplastics in urban runoff: Global occurrence and fate. Water Research, 225: 119129 https://doi.org/10.1016/j.watres.2022.119129
146
L Wang, W M Wu, N S Bolan, D C W Tsang, Y Li, M Qin, D Y Hou. (2021). Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives. Journal of Hazardous Materials, 401: 123415 https://doi.org/10.1016/j.jhazmat.2020.123415
147
S Wang, W Shi, Z Huang, N Zhou, Y Xie, Y Tang, F Hu, G Liu, H Zheng. (2022b). Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. Journal of Hazardous Materials, 423: 127213 https://doi.org/10.1016/j.jhazmat.2021.127213
148
Y Wang, L Luo, X Li, J Wang, H Wang, C Chen, H Guo, T Han, A Zhou, X Zhao. (2022c). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837: 155719 https://doi.org/10.1016/j.scitotenv.2022.155719
149
Z Wang, X Xin, X Shi, Y Zhang. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Science of the Total Environment, 726: 138564 https://doi.org/10.1016/j.scitotenv.2020.138564
150
P, Warnke Cuhls K, Schmoch U, Daniel L, Andreescu L, Dragomir B, Gheorghiu R, Baboschi C, Curaj A, Parkkinen M, et al. (2019). European Commission, Directorate-General for Research and Innovation, 100 Radical Innovation Breakthroughs for the Future. Brussels: Publications Office of the European Union
151
R Wei, T Tiso, J Bertling, K O’Connor, L M Blank, U T Bornscheuer. (2020). Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis, 3(11): 867–871 https://doi.org/10.1038/s41929-020-00521-w
S Woo, I Song, H J Cha. (2020). Fast and facile biodegradation of polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Applied and Environmental Microbiology, 86(18): e01361–20 https://doi.org/10.1128/AEM.01361-20
154
W M Wu, C S Criddle. (2021). Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 648: 95–120 https://doi.org/10.1016/bs.mie.2020.12.029
155
W M Wu, J Yang, C S Criddle. (2017). Microplastics pollution and reduction strategies. Frontiers of Environmental Science & Engineering, 11(1): 6–7 https://doi.org/10.1007/s11783-017-0897-7
156
Z Y Wu, W Shi, T G Valencak, Y N Zhang, G X Liu, D X Ren. (2023). Biodegradation of conventional plastics: Candidate organisms and potential mechanisms. Science of the Total Environment, 885: 163908 https://doi.org/10.1016/j.scitotenv.2023.163908
157
M Xia, L Hu, Y X Huo, Y Yang. (2020a). Myroides albus sp. nov., isolated from the gut of plastic-eating larvae of the coleopteran insect Zophobas atratus. International Journal of Systematic and Evolutionary Microbiology, 70: 5460–5466 https://doi.org/10.1099/ijsem.0.004429
158
M Xia, J Wang, Y X Huo, Y Yang. (2020b). Mixta tenebrionis sp. nov., isolated from the gut of the plastic-eating mealworm Tenebrio molitor L. International Journal of Systematic and Evolutionary Microbiology, 70(2): 790–796 https://doi.org/10.1099/ijsem.0.003826
159
Y Xu, Z N Xian, W L Yue, C F Yin, N Y Zhou. (2023). Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae. Chemosphere, 318: 137944 https://doi.org/10.1016/j.chemosphere.2023.137944
160
J Yang, Y Yang, W M Wu, J Zhao, L Jiang. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48(23): 13776–13784 https://doi.org/10.1021/es504038a
161
L Yang, J Gao, Y Liu, G Zhuang, X Peng, W M Wu, X Zhuang. (2021d). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262: 127818 https://doi.org/10.1016/j.chemosphere.2020.127818
162
S S Yang, A M Brandon, J C A Flanagan, J Yang, D Ning, S Y Cai, H Q Fan, Z Y Wang, J Ren, M E Benbow. et al.. (2018a). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191: 979–989 https://doi.org/10.1016/j.chemosphere.2017.10.117
163
S S Yang, Y D Chen, J H Kang, T R Xie, L He, D F Xing, N Q Ren, S H Ho, W M Wu. (2019a). Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. Journal of Cleaner Production, 227: 33–47 https://doi.org/10.1016/j.jclepro.2019.04.005
164
S S Yang, Y D Chen, Y Zhang, H M Zhou, X Y Ji, L He, D F Xing, N Q Ren, S H Ho, W M Wu. (2019b). A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as by product for heavy metal removal. Environmental Pollution, 252: 1142–1153 https://doi.org/10.1016/j.envpol.2019.06.028
165
S S Yang, M Q Ding, L He, C H Zhang, Q X Li, D F Xing, G L Cao, L Zhao, J Ding, N Q Ren. et al.. (2021b). Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) angd superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Science of the Total Environment, 756: 144087 https://doi.org/10.1016/j.scitotenv.2020.144087
166
S S Yang, M Q Ding, X R Ren, Z R Zhang, M X Li, L L Zhang, J W Pang, C X Chen, L Zhao, D F Xing. et al.. (2022b). Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Science of the Total Environment, 828: 154458 https://doi.org/10.1016/j.scitotenv.2022.154458
167
S S Yang, M Q Ding, Z R Zhang, J Ding, S W Bai, G L Cao, L Zhao, J W Pang, D F Xing, N Q Ren. et al.. (2021a). Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 789: 147915 https://doi.org/10.1016/j.scitotenv.2021.147915
168
S S Yang, W M Wu, A M Brandon, H Q Fan, J P Receveur, Y Li, Z Y Wang, R Fan, R L McClellan, S H Gao. et al.. (2018b). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212: 262–271 https://doi.org/10.1016/j.chemosphere.2018.08.078
169
S S Yang, W M Wu, J W Pang, L He, M Q Ding, M X Li, Y L Zhao, H J Sun, D F Xing, N Q Ren. et al.. (2023a). Bibliometric analysis of publications on biodegradation of plastics: explosively emerging research over 70 years. Journal of Cleaner Production, 428: 139423 https://doi.org/10.1016/j.jclepro.2023.139423
170
X G Yang, P P Wen, Y F Yang, P P Jia, W G Li, D S Pei. (2022a). Plastic biodegradation by invitro environmental microorganisms and invivo gut microorganisms of insects. Frontiers in Microbiology, 13: 1001750 https://doi.org/10.3389/fmicb.2022.1001750
171
X L Yang, S H Wang, Y Gong, Z G Yang. (2021c). Effect of biological degradation by termites on the abnormal leakage of buried HDPE pipes. Engineering Failure Analysis, 124: 105367 https://doi.org/10.1016/j.engfailanal.2021.105367
172
Y Yang, L Hu, J L Wang, G S Jin. (2023b). Nitrogen fixation and diazotrophic community in plastic-eating mealworms Tenebrio molitor. Microbial Ecology, 85(1): 264–276 https://doi.org/10.1007/s00248-021-01930-5
173
Y Yang, J Wang, M Xia. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708: 135233 https://doi.org/10.1016/j.scitotenv.2019.135233
174
Y Yang, J Yang, W M Wu, J Zhao, Y Song, L Gao, R Yang, L Jiang. (2015a). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20): 12080–12086 https://doi.org/10.1021/acs.est.5b02661
175
Y Yang, J Yang, W M Wu, J Zhao, Y Song, L Gao, R Yang, L Jiang. (2015b). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20): 12087–12093 https://doi.org/10.1021/acs.est.5b02663
176
C F Yin, Y Xu, N Y Zhou. (2020). Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. International Biodeterioration & Biodegradation, 155: 105089 https://doi.org/10.1016/j.ibiod.2020.105089
177
S Yoshida, K Hiraga, T Takehana, I Taniguchi, H Yamaji, Y Maeda, K Toyohara, K Miyamoto, Y Kimura, K Oda. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278): 1196–1199 https://doi.org/10.1126/science.aad6359
178
H Zhang, Q Liu, H Wu, W X Sun, F Yang, Y H Ma, Y J Qi. (2023). Biodegradation of polyethylene film by the Bacillus sp. PELW2042 from the guts of Tenebrio molitor (Mealworm Larvae). Process Biochemistry, 130: 236–244
179
J Zhang, D Gao, Q Li, Y Zhao, L Li, H Lin, Q Bi, Y Zhao. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704: 135931 https://doi.org/10.1016/j.scitotenv.2019.135931
180
Z Zhang, H P Peng, D C Yang, G Q Zhang, J L Zhang, F Ju. (2022). Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nature Communications, 13(1): 5360 https://doi.org/10.1038/s41467-022-32903-y
181
Z Q Zhang. (2011). Animal biodiversity: an introduction to higher-level classification and taxonomic richness. Zootaxa, 7(1): 3148 https://doi.org/10.11646/zootaxa.3148.1.3
182
Z Zhong, W Nong, Y Xie, J H L Hui, L M Chu. (2022). Long-term effect of plastic feeding on growth and transcriptomic response of mealworms (Tenebrio molitor L.). Chemosphere, 287: 132063 https://doi.org/10.1016/j.chemosphere.2021.132063
183
Z Zhong, X Zhou, Y C Xie, L M Chu. (2023). The interplay of larval age and particle size regulates micro-polystyrene biodegradation and development of Tenebrio molitor L. Science of the Total Environment, 857: 159335 https://doi.org/10.1016/j.scitotenv.2022.159335
184
P Zhu, S S Gong, M Q Deng, B Xia, Y Yang, J Tang, G Qian, F Yu, A Goonetilleke, X Li. (2023). Biodegradation of waste refrigerator polyurethane by mealworms. Frontiers of Environmental Science & Engineering, 17(3): 38 https://doi.org/10.1007/s11783-023-1638-8
185
P Zhu, Y Shen, X Li, X Liu, G Qian, J Zhou. (2022). Feeding preference of insect larvae to waste electrical and electronic equipment plastics. Science of the Total Environment, 807: 151037 https://doi.org/10.1016/j.scitotenv.2021.151037
186
E Zielińska, D Zieliński, A Jakubczyk, M Karaś, U Pankiewicz, B Flasz, M Dziewiecka, S Lewicki. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytoxicity and oxidative stress parameters. Food Chemistry, 345: 128846 https://doi.org/10.1016/j.foodchem.2020.128846
187
N Zolotova, A Kosyreva, D Dzhalilova, N Fokichev, O Makarova. (2022). Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ, 10: e13503 https://doi.org/10.7717/peerj.13503