Xeroderma pigmentosum group B (XPB) and D (XPD) are two DNA helicases inside the transcription factor TFIIH complex required for both transcription and DNA repair. The importance of these helicases is underscored by the fact that mutations of XPB and XPD cause diseases with extremely high sensitivity to UV-light and high risk of cancer, premature aging, etc. This mini-review focuses on recent developments in both structural and functional characterization of these XP helicases to illustrate their distinguished biological roles within the architectural restriction of the TFIIH complex. In particular, molecular mechanisms of DNA unwinding by these helicases for promoter opening during transcription initiation and bubble-creation around the lesion during DNA repair are described based on the integration of the crystal structures of XPB and XPD helicases into the architecture of the TFIIH complex.
Corresponding Author(s):
FAN Li,Email:li.fan@ucr.edu
引用本文:
. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases[J]. Frontiers in Biology, 2013, 8(4): 363-368.
Li FAN. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases. Front Biol, 2013, 8(4): 363-368.
Chang W H, Kornberg R D (2000). Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell , 102(5): 609–613 doi: 10.1016/S0092-8674(00)00083-0 pmid:11007479
2
Compe E, Egly J M (2012). TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol , 13(6): 343–354 doi: 10.1038/nrm3350 pmid:22572993
3
Egly J M, Coin F (2011). A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) , 10(7): 714–721 doi: 10.1016/j.dnarep.2011.04.021 pmid:21592869
4
Fan L, Arvai A S, Cooper P K, Iwai S, Hanaoka F, Tainer J A (2006). Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell , 22(1): 27–37 doi: 10.1016/j.molcel.2006.02.017 pmid:16600867
5
Fan L, Fuss J O, Cheng Q J, Arvai A S, Hammel M, Roberts V A, Cooper P K, Tainer J A (2008). XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell , 133(5): 789–800 doi: 10.1016/j.cell.2008.04.030 pmid:18510924
6
Fuss J O, Tainer J A (2011). XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) , 10(7): 697–713 doi: 10.1016/j.dnarep.2011.04.028 pmid:21571596
7
Gillet L C J, Sch?rer O D (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev , 106(2): 253–276 doi: 10.1021/cr040483f pmid:16464005
8
Hanawalt P C, Spivak G (2008). Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol , 9(12): 958–970 doi: 10.1038/nrm2549 pmid:19023283
9
Hilario E, Li Y, Nobumori Y, Liu X, Fan L (2013). Structure of the C-terminal half of human XPB helicase and the impact of the disease-causing mutation XP11BE. Acta Crystallogr D Biol Crystallogr , 69(Pt 2): 237–246 doi: 10.1107/S0907444912045040 pmid:23385459
10
Kim T K, Ebright R H, Reinberg D (2000). Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science , 288(5470): 1418–1422 doi: 10.1126/science.288.5470.1418 pmid:10827951
Liu H, Rudolf J, Johnson K A, McMahon S A, Oke M, Carter L, McRobbie A M, Brown S E, Naismith J H, White M F (2008). Structure of the DNA repair helicase XPD. Cell , 133(5): 801–812 doi: 10.1016/j.cell.2008.04.029 pmid:18510925
13
Mathieu N, Kaczmarek N, Naegeli H (2010). Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Natl Acad Sci U S A , 107(41): 17545–17550 doi: 10.1073/pnas.1004339107 pmid:20876134
14
Min J H, Pavletich N P (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature , 449(7162): 570–575 doi: 10.1038/nature06155 pmid:17882165
15
Naegeli H, Modrich P, Friedberg E C (1993). The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications. J Biol Chem , 268(14): 10386–10392 pmid:8387518
16
Naegeli H, Sugasawa K (2011). The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst) , 10(7): 673–683 doi: 10.1016/j.dnarep.2011.04.019 pmid:21684221
17
Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly J M, Coin F (2009). Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J , 28(19): 2971–2980 doi: 10.1038/emboj.2009.230 pmid:19713942
18
Roth H M, R?mer J, Grundler V, Van Houten B, Kisker C, Tessmer I (2012). XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst) , 11(3): 286–293 doi: 10.1016/j.dnarep.2011.12.002 pmid:22237014
19
Rouillon C, White M F (2010). The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem , 285(14): 11013–11022 doi: 10.1074/jbc.M109.094763 pmid:20139443
20
Sarker A H, Tsutakawa S E, Kostek S, Ng C, Shin D S, Peris M, Campeau E, Tainer J A, Nogales E, Cooper P K (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell , 20(2): 187–198 doi: 10.1016/j.molcel.2005.09.022 pmid:16246722
21
Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly J M (2000). Molecular structure of human TFIIH. Cell , 102(5): 599–607 doi: 10.1016/S0092-8674(00)00082-9 pmid:11007478
22
Singleton M R, Dillingham M S, Wigley D B (2007). Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem , 76: 23–50
23
Wolski S C, Kuper J, H?nzelmann P, Truglio J J, Croteau D L, Van Houten B, Kisker C (2008). Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol , 6(6): e149 doi: 10.1371/journal.pbio.0060149 pmid:18578568