Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Frontiers in Biology  2013, Vol. 8 Issue (4): 363-368   https://doi.org/10.1007/s11515-013-1259-x
  MINI-REVIEW 本期目录
How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases
How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases
Li FAN()
Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA
 全文: PDF(443 KB)   HTML
Abstract

Xeroderma pigmentosum group B (XPB) and D (XPD) are two DNA helicases inside the transcription factor TFIIH complex required for both transcription and DNA repair. The importance of these helicases is underscored by the fact that mutations of XPB and XPD cause diseases with extremely high sensitivity to UV-light and high risk of cancer, premature aging, etc. This mini-review focuses on recent developments in both structural and functional characterization of these XP helicases to illustrate their distinguished biological roles within the architectural restriction of the TFIIH complex. In particular, molecular mechanisms of DNA unwinding by these helicases for promoter opening during transcription initiation and bubble-creation around the lesion during DNA repair are described based on the integration of the crystal structures of XPB and XPD helicases into the architecture of the TFIIH complex.

Key wordsXPB    XPD    TFIIH    helicase    DNA repair    nucleotide excision repair    transcription
收稿日期: 2012-11-14      出版日期: 2013-08-01
Corresponding Author(s): FAN Li,Email:li.fan@ucr.edu   
 引用本文:   
. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases[J]. Frontiers in Biology, 2013, 8(4): 363-368.
Li FAN. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases. Front Biol, 2013, 8(4): 363-368.
 链接本文:  
https://academic.hep.com.cn/fib/CN/10.1007/s11515-013-1259-x
https://academic.hep.com.cn/fib/CN/Y2013/V8/I4/363
Fig.1  
Fig.2  
1 Chang W H, Kornberg R D (2000). Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell , 102(5): 609–613
doi: 10.1016/S0092-8674(00)00083-0 pmid:11007479
2 Compe E, Egly J M (2012). TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol , 13(6): 343–354
doi: 10.1038/nrm3350 pmid:22572993
3 Egly J M, Coin F (2011). A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) , 10(7): 714–721
doi: 10.1016/j.dnarep.2011.04.021 pmid:21592869
4 Fan L, Arvai A S, Cooper P K, Iwai S, Hanaoka F, Tainer J A (2006). Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell , 22(1): 27–37
doi: 10.1016/j.molcel.2006.02.017 pmid:16600867
5 Fan L, Fuss J O, Cheng Q J, Arvai A S, Hammel M, Roberts V A, Cooper P K, Tainer J A (2008). XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell , 133(5): 789–800
doi: 10.1016/j.cell.2008.04.030 pmid:18510924
6 Fuss J O, Tainer J A (2011). XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) , 10(7): 697–713
doi: 10.1016/j.dnarep.2011.04.028 pmid:21571596
7 Gillet L C J, Sch?rer O D (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev , 106(2): 253–276
doi: 10.1021/cr040483f pmid:16464005
8 Hanawalt P C, Spivak G (2008). Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol , 9(12): 958–970
doi: 10.1038/nrm2549 pmid:19023283
9 Hilario E, Li Y, Nobumori Y, Liu X, Fan L (2013). Structure of the C-terminal half of human XPB helicase and the impact of the disease-causing mutation XP11BE. Acta Crystallogr D Biol Crystallogr , 69(Pt 2): 237–246
doi: 10.1107/S0907444912045040 pmid:23385459
10 Kim T K, Ebright R H, Reinberg D (2000). Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science , 288(5470): 1418–1422
doi: 10.1126/science.288.5470.1418 pmid:10827951
11 Kuper J, Kisker C (2013). DNA Helicases in NER, BER, and MMR. Adv Exp Med Biol , 767: 203–224
doi: 10.1007/978-1-4614-5037-5_10 pmid:23161013
12 Liu H, Rudolf J, Johnson K A, McMahon S A, Oke M, Carter L, McRobbie A M, Brown S E, Naismith J H, White M F (2008). Structure of the DNA repair helicase XPD. Cell , 133(5): 801–812
doi: 10.1016/j.cell.2008.04.029 pmid:18510925
13 Mathieu N, Kaczmarek N, Naegeli H (2010). Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Natl Acad Sci U S A , 107(41): 17545–17550
doi: 10.1073/pnas.1004339107 pmid:20876134
14 Min J H, Pavletich N P (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature , 449(7162): 570–575
doi: 10.1038/nature06155 pmid:17882165
15 Naegeli H, Modrich P, Friedberg E C (1993). The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications. J Biol Chem , 268(14): 10386–10392
pmid:8387518
16 Naegeli H, Sugasawa K (2011). The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst) , 10(7): 673–683
doi: 10.1016/j.dnarep.2011.04.019 pmid:21684221
17 Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly J M, Coin F (2009). Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J , 28(19): 2971–2980
doi: 10.1038/emboj.2009.230 pmid:19713942
18 Roth H M, R?mer J, Grundler V, Van Houten B, Kisker C, Tessmer I (2012). XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst) , 11(3): 286–293
doi: 10.1016/j.dnarep.2011.12.002 pmid:22237014
19 Rouillon C, White M F (2010). The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem , 285(14): 11013–11022
doi: 10.1074/jbc.M109.094763 pmid:20139443
20 Sarker A H, Tsutakawa S E, Kostek S, Ng C, Shin D S, Peris M, Campeau E, Tainer J A, Nogales E, Cooper P K (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell , 20(2): 187–198
doi: 10.1016/j.molcel.2005.09.022 pmid:16246722
21 Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly J M (2000). Molecular structure of human TFIIH. Cell , 102(5): 599–607
doi: 10.1016/S0092-8674(00)00082-9 pmid:11007478
22 Singleton M R, Dillingham M S, Wigley D B (2007). Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem , 76: 23–50
23 Wolski S C, Kuper J, H?nzelmann P, Truglio J J, Croteau D L, Van Houten B, Kisker C (2008). Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol , 6(6): e149
doi: 10.1371/journal.pbio.0060149 pmid:18578568
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed