BACKGROUND: With the given diversity and abundance of several targets of miRNAs, they functionally appear to interact with several elements of the multiple cellular networks to maintain physiologic homeostasis. They can function as tumor suppressors or oncogenes, whose under or overexpression has both diagnostic and prognostic significance in various cancers while being implicated as prospective regulators of age-related disorders (ARD) as well. Establishing a concatenate between ARD and cancers by looking into the insights of the shared miRNAs may have a practical relevance.
METHODS: In the present work, we performed network analysis of miRNA-disease association and miRNA-target gene interaction to prioritize miRNAs that play significant roles in the manifestation of cancer as well as ARD. Also, we developed a repository that stores miRNAs common to both ARD and cancers along with their target genes.
RESULTS: We have comprehensively curated all miRNAs that we found to be shared in both the diseases in the human genome and established a database, miRACA (Database for microRNAs Associated with Cancers and ARD) that currently houses information of 1648 miRNAs that are significantly associated with 38 variants supported with pertinent data. It has been made available online at http://genomeinformatics.dtu.ac.in/miraca/ for easy retrieval and utilization of data by the scientific community.
CONCLUSION: To the best of our knowledge, our database is the first attempt at compilation of such data. We believe this work may serve as a significant resource and facilitate the analysis of miRNA regulatory mechanisms shared between cancers and ARD to apprehend disease etiology.
. [J]. Frontiers in Biology, 2018, 13(1): 36-50.
Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD). Front. Biol., 2018, 13(1): 36-50.
Inflammation mediated by chemokine and cytokine signaling pathway
12 genes (14%)
Angiogenesis
11 genes (12.8%)
Gonadotropin-releasing hormone receptor pathway
8 genes (9.3%)
PDGF signaling pathway
8 genes (9.3%)
Integrin signaling pathway
8 genes (9.3%)
Wnt signaling pathway
7 genes (8.1%)
p53 pathway feedback loops 2
7 genes (8.1%)
Apoptosis signaling pathway
6 genes (7%)
Ras Pathway
6 genes (7%)
TGF-beta signaling pathway
6 genes (7%)
Alzheimer disease-presenilin pathway
5 genes (5.8%)
Interleukin signaling pathway
4 genes (4.7%)
pI3 kinase pathway
4 genes (4.7%)
p53 pathway
4 genes (4.7%)
T cell activation
3 genes (3.5%)
Oxidative stress response
3 genes (3.5%)
Toll receptor signaling pathway
3 genes (3.5%)
VEGF signaling pathway
3 genes (3.5%)
Insulin/IGF pathway-protein kinase B signaling cascade
3 genes (3.5%)
Cytoskeletal regulation by Rho GTPase
3 genes (3.5%)
EGF receptor signaling pathway
3 genes (3.5%)
Blood coagulation
3 genes (3.5%)
Alzheimer disease-amyloid secretase pathway
2 genes (2.3%)
axon guidance mediated by semaphorins
2 genes (2.3%)
B cell activation
2 genes (2.3%)
Axon guidance mediated by Slit/Robo
2 genes (2.3%)
Cadherin signaling pathway
2 genes (2.3%)
Cell cycle
2 genes (2.3%)
Endothelin signaling pathway
2 genes (2.3%)
Interferon-gamma signaling pathway
2 genes (2.3%)
FGF signaling pathway
2 genes (2.3%)
Huntington disease
2 genes (2.3%)
Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade
2 genes (2.3%)
FAS signaling pathway
1 gene (1.2%)
p38 MAPK pathway
1 gene (1.2%)
p53 pathway by glucose deprivation
1 gene (1.2%)
Plasminogen activating cascade
1 gene (1.2%)
JAK/STAT signaling pathway
1 gene (1.2%)
MYO signaling pathway
1 gene (1.2%)
Hypoxia response via HIF activation
1 gene (1.2%)
p53 pathway feedback loops 1
1 gene (1.2%)
Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway
1 gene (1.2%)
Axon guidance mediated by netrin
1 gene (1.2%)
ALP23B signaling pathway
1 gene (1.2%)
Activin beta signaling pathway
1 gene (1.2%)
BMP/activin signaling pathway-drosophila
1 gene (1.2%)
Angiotensin ii-stimulated signaling through g proteins and beta-arrestin
1 gene (1.2%)
Tab.7
Fig.7
S. No.
Disease class
1
Gastrointestinal cancer
2
Lung cancer
3
Skin cancer
4
Prostate cancer
5
Bladder cancer
6
Breast cancer
7
Liver cancer
8
Renal cancer
9
Cardiovascular diseases
10
Diabetic nephropathies
11
Brain cancer
12
Neuroblastoma
13
Lymphoma
14
Lupus erythematosus, systemic
15
Oral cancer
16
Bone cancer
17
Ovarian cancer
18
Uterine cervical cancer
Tab.8
Fig.8
1
Agarwal V, Bell G W, Nam J W, Bartel D P (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4: e05005 https://doi.org/10.7554/eLife.05005
pmid: 26267216
Chang-Hao Tsao S, Behren A, Cebon J, Christophi C (2015). The role of circulating microRNA in hepatocellular carcinoma. Front Biosci (Landmark Ed), 20(1): 78–104 https://doi.org/10.2741/4299
pmid: 25553441
Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang M W, Hackl M, Monteforte R, Kühnel H, Schosserer M, Gruber F, Tschachler E, Scheideler M, Grillari-Voglauer R, Grillari J, Wieser M (2013). High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell, 12(3): 446–458 https://doi.org/10.1111/acel.12069
pmid: 23496142
6
Esquela-Kerscher A, Slack F J (2006). Oncomirs- microRNAs with a role in cancer. Nat Rev Cancer, 6(4): 259–269 https://doi.org/10.1038/nrc1840
pmid: 16557279
7
Filipowicz W, Bhattacharyya S N, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9(2): 102–114 https://doi.org/10.1038/nrg2290
pmid: 18197166
He H, Baldwin G S (2008). Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins. Int J Biochem Cell Biol, 40(10): 2018–2022 https://doi.org/10.1016/j.biocel.2008.05.002
pmid: 18565785
14
He H, Yim M, Liu K H, Cody S C, Shulkes A, Baldwin G S (2008). Involvement of G proteins of the Rho family in the regulation of Bcl-2-like protein expression and caspase 3 activation by Gastrins. Cell Signal, 20(1): 83–93 https://doi.org/10.1016/j.cellsig.2007.08.018
pmid: 17936584
Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13 https://doi.org/10.1093/nar/gkn923
pmid: 19033363
17
Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57 https://doi.org/10.1038/nprot.2008.211
pmid: 19131956
18
Hulsen T, de Vlieg J, Alkema W (2008). BioVenn- a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics, 9(1): 488 https://doi.org/10.1186/1471-2164-9-488
pmid: 18925949
19
Huntzinger E, Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 12(2): 99–110 https://doi.org/10.1038/nrg2936
pmid: 21245828
Iorio M V, Ferracin M, Liu C G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo J P, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin G A, Querzoli P, Negrini M, Croce C M (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16): 7065–7070 https://doi.org/10.1158/0008-5472.CAN-05-1783
pmid: 16103053
Kang J, Pervaiz S (2013). Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol, 2: 206 https://doi.org/10.3389/fonc.2012.00206
pmid: 23316476
24
Kayani Mu, Kayani M A, Malik F A, Faryal R (2011). Role of miRNAs in breast cancer. Asian Pac J Cancer Prev, 12(12): 3175–3180
pmid: 22471449
25
Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso M A (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014: 149185 https://doi.org/10.1155/2014/149185
pmid: 24901008
26
Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843–854 https://doi.org/10.1016/0092-8674(93)90529-Y
pmid: 8252621
27
Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20 https://doi.org/10.1016/j.cell.2004.12.035
pmid: 15652477
28
Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res, 42(Database issue): D1070–D1074 https://doi.org/10.1093/nar/gkt1023
pmid: 24194601
Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043): 834–838 https://doi.org/10.1038/nature03702
pmid: 15944708
31
Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell M J, Kitano H (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res, 33(suppl_1):D284–8.
32
Mi H, Muruganujan A, Casagrande J T, Thomas P D (2013). Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 8(8): 1551–1566 https://doi.org/10.1038/nprot.2013.092
pmid: 23868073
Palmero E I, de Campos S G, Campos M, de Souza N C, Guerreiro I D, Carvalho A L, Marques M M (2011). Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol, 34(3): 363–370 https://doi.org/10.1590/S1415-47572011000300001
pmid: 21931505
35
Ponnappan S, Ponnappan U (2011). Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal, 14(8): 1551–1585 https://doi.org/10.1089/ars.2010.3228
pmid: 20812785
36
Ro S, Park C, Young D, Sanders K M, Yan W (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res, 35(17): 5944–5953 https://doi.org/10.1093/nar/gkm641
pmid: 17726050
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11): 2498–2504 https://doi.org/10.1101/gr.1239303
pmid: 14597658
40
Srivastava I, Gahlot L K, Khurana P, Hasija Y (2016). dbAARD & AGP: A computational pipeline for the prediction of genes associated with age related disorders. J Biomed Inform, 60: 153–161 https://doi.org/10.1016/j.jbi.2016.01.004
pmid: 26836976
Volinia S, Calin G A, Liu C G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt R L, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris C C, Croce C M (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103(7): 2257–2261 https://doi.org/10.1073/pnas.0510565103
pmid: 16461460
43
Wang L, Chadwick W, Park S S, Zhou Y, Silver N, Martin B, Maudsley S (2010). Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS Neurol Disord Drug Targets, 9(5): 651–660 https://doi.org/10.2174/187152710793361559
pmid: 20632963
Zhang L, Huang J, Yang N, Greshock J, Megraw M S, Giannakakis A, Liang S, Naylor T L, Barchetti A, Ward M R, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty P A, Weber B L, Coukos G (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA, 103(24): 9136–9141 https://doi.org/10.1073/pnas.0508889103
pmid: 16754881