Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Frontiers in Biology  2018, Vol. 13 Issue (1): 36-50   https://doi.org/10.1007/s11515-018-1481-7
  本期目录
miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)
Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija()
Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India
 全文: PDF(3784 KB)   HTML
Abstract

BACKGROUND: With the given diversity and abundance of several targets of miRNAs, they functionally appear to interact with several elements of the multiple cellular networks to maintain physiologic homeostasis. They can function as tumor suppressors or oncogenes, whose under or overexpression has both diagnostic and prognostic significance in various cancers while being implicated as prospective regulators of age-related disorders (ARD) as well. Establishing a concatenate between ARD and cancers by looking into the insights of the shared miRNAs may have a practical relevance.

METHODS: In the present work, we performed network analysis of miRNA-disease association and miRNA-target gene interaction to prioritize miRNAs that play significant roles in the manifestation of cancer as well as ARD. Also, we developed a repository that stores miRNAs common to both ARD and cancers along with their target genes.

RESULTS: We have comprehensively curated all miRNAs that we found to be shared in both the diseases in the human genome and established a database, miRACA (Database for microRNAs Associated with Cancers and ARD) that currently houses information of 1648 miRNAs that are significantly associated with 38 variants supported with pertinent data. It has been made available online at http://genomeinformatics.dtu.ac.in/miraca/ for easy retrieval and utilization of data by the scientific community.

CONCLUSION: To the best of our knowledge, our database is the first attempt at compilation of such data. We believe this work may serve as a significant resource and facilitate the analysis of miRNA regulatory mechanisms shared between cancers and ARD to apprehend disease etiology.

Key wordsmiRNA    cancer    age related disorders (ARD)    target genes    database
收稿日期: 2017-09-09      出版日期: 2018-03-26
Corresponding Author(s): Yasha Hasija   
 引用本文:   
. [J]. Frontiers in Biology, 2018, 13(1): 36-50.
Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD). Front. Biol., 2018, 13(1): 36-50.
 链接本文:  
https://academic.hep.com.cn/fib/CN/10.1007/s11515-018-1481-7
https://academic.hep.com.cn/fib/CN/Y2018/V13/I1/36
Fig.1  
Colonic neoplasms Coronary artery disease
Lung neoplasms Ovarian neoplasms
Breast neoplasms Urinary bladder neoplasms
Pancreatic neoplasms Long qt syndrome
Prostatic neoplasms Parkinson’s disease
Schizophrenia Colorectal neoplasms
Stomach neoplasms Obesity
Cardiac arrhythmias Uterine cervical neoplasms
Diabetes mellitus Graves’ disease
Liver neoplasms Basal cell carcinoma
Glioblastoma Hyperlipidemias
Alzheimer’s disease Mouth neoplasms
Melanoma Medulloblastoma
Dementia Cardiomegaly
Gastrointestinal neoplasms Gastric neoplasms
Myocardial infarction Bladder neoplasms
Lymphoma Prostate neoplasms
Cardiomyopathies Stomach neoplasms
Carotid artery diseases Osteosarcoma
Hearing loss Anxiety disorders
Osteoarthritis Colon Neoplasms
Type 2 diabetes mellitus Atrial fibrillation
Neurodegenerative diseases Diabetic retinopathy
Rheumatoid arthritis Systemic lupus erythematosus
Hypertension Osteosarcoma
Arthritis Mesothelioma
Atherosclerosis Chronic obstructive pulmonary disease
Adenocarcinoma Diabetic nephropathies
Colorectal neoplasms, hereditary Osteoporosis
Brain neoplasms Type 1 diabetes mellitus
Multiple sclerosis Neuroblastoma
Acute coronary syndrome Crohn’s disease
Ulcerative colitis Renal cell carcinoma
Cardiovascular diseases Squamous cell carcinoma
Pulmonary fibrosis Squamous cell carcinoma
Tab.1  
Lung neoplasms Leukemia
Breast neoplasms Prostate neoplasms
Hepatocellular carcinoma Ovarian neoplasms
Pancreatic neoplasms Uterine cervical neoplasms
Gastric neoplasms Thyroid neoplasms
Bladder neoplasms Urinary bladder neoplasms
Stomach neoplasms Oral carcinoma
Cholangiocarcinoma Stomach neoplasms
Colorectal neoplasms Osteosarcoma
Burkitt’s lymphoma Colon neoplasms
Hodgkin’s disease Glioblastoma
Lymphoma Mesothelioma
Multiple myeloma Endometrial neoplasms
Pituitary neoplasms Kidney neoplasms
Hematologic neoplasms Laryngeal neoplasms
Brain neoplasms Synovial sarcoma
Leiomyosarcoma Ewing's sarcoma
Papilary thyroid carcinoma Squamous cell neoplasms
Neuroblastoma Hemangiosarcoma
Testicular neoplasms Basal cell carcinoma
Nasopharyngeal neoplasms Small cell carcinoma
Multiple hamartoma syndrome Biliary tract neoplasms
Melanoma Fibrosarcoma
Liposarcoma Hypopharyngeal neoplasms
Astrocytoma Kaposi’s sarcoma
Renal cell carcinoma Medulloblastoma
Adenocarcinoma Cerebellar neoplasms
Esophageal neoplasms Salivary gland neoplasms
Choriocarcinoma Adrenocortical carcinoma
Gastrointestinal neoplasms Colorectal neoplasms
Squamous cell carcinoma Retinoblastoma
Nerve sheath neoplasms Osteosarcoma
Oligodendroglioma Liver neoplasms
Rectal neoplasms Adrenocortical adenoma
Rhabdomyosarcoma Adrenal cortex neoplasms
Waldenstrom macroglobulinemia Hepatoblastoma
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
miRNA Closeness centrality value Degree
hsa-mir-31 0.27 12
hsa-mir-221 0.25 11
hsa-mir-21 0.24 11
hsa-mir-125b-1 0.27 10
hsa-mir-34b 0.26 10
hsa-mir-34c 0.24 10
hsa-mir-126 0.24 10
hsa-mir-125b-2 0.26 9
hsa-mir-148a 0.26 9
hsa-mir-143 0.26 9
hsa-mir-16-1 0.25 9
hsa-let-7g 0.25 9
Tab.3  
Cluster Enrichment score-2.21 p-value
1 Small GTPase superfamily 0.002
Prenylation 0.005
Small GTP binding protein domain 0.008
GTP binding 0.002
Tab.4  
Fig.6  
Biological processes Number of genes (percentage)
Cellular processes 54 genes (62.8%)
Metabolic process 38 genes (44.2%)
Developmental process 27 genes (31.4%)
Response to stimulus 24 genes (27.9%)
Biological regulation 16 genes (18.6%)
Immune system process 11 genes (12.8%)
Multicellular organismal process 9 genes (10.5%)
Cellular component organization or biogenesis 7 genes (8.1%)
Biological adhesion 6 genes (7%)
Reproduction 2 genes (2.3%)
Localization 2 genes (2.3%)
Locomotion 2 genes (2.3%)
Tab.5  
Molecular functions Number of genes (percentage)
Binding 44 genes (51.2%)
Catalytic activity 32 genes (37.2%)
Receptor activity 5 genes (5.8%)
Structural molecule activity 2 genes (2.3%)
Translation regulator activity 1 gene (1.2%)
Transporter activity 1 gene (1.2%)
Signal transducer activity 1 gene (1.2%)
Tab.6  
Pathways Number of genes (percentage)
CCKR (cholecystokinin receptor) signaling map 12 genes (14%)
Inflammation mediated by chemokine and cytokine signaling pathway 12 genes (14%)
Angiogenesis 11 genes (12.8%)
Gonadotropin-releasing hormone receptor pathway 8 genes (9.3%)
PDGF signaling pathway 8 genes (9.3%)
Integrin signaling pathway 8 genes (9.3%)
Wnt signaling pathway 7 genes (8.1%)
p53 pathway feedback loops 2 7 genes (8.1%)
Apoptosis signaling pathway 6 genes (7%)
Ras Pathway 6 genes (7%)
TGF-beta signaling pathway 6 genes (7%)
Alzheimer disease-presenilin pathway 5 genes (5.8%)
Interleukin signaling pathway 4 genes (4.7%)
pI3 kinase pathway 4 genes (4.7%)
p53 pathway 4 genes (4.7%)
T cell activation 3 genes (3.5%)
Oxidative stress response 3 genes (3.5%)
Toll receptor signaling pathway 3 genes (3.5%)
VEGF signaling pathway 3 genes (3.5%)
Insulin/IGF pathway-protein kinase B signaling cascade 3 genes (3.5%)
Cytoskeletal regulation by Rho GTPase 3 genes (3.5%)
EGF receptor signaling pathway 3 genes (3.5%)
Blood coagulation 3 genes (3.5%)
Alzheimer disease-amyloid secretase pathway 2 genes (2.3%)
axon guidance mediated by semaphorins 2 genes (2.3%)
B cell activation 2 genes (2.3%)
Axon guidance mediated by Slit/Robo 2 genes (2.3%)
Cadherin signaling pathway 2 genes (2.3%)
Cell cycle 2 genes (2.3%)
Endothelin signaling pathway 2 genes (2.3%)
Interferon-gamma signaling pathway 2 genes (2.3%)
FGF signaling pathway 2 genes (2.3%)
Huntington disease 2 genes (2.3%)
Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade 2 genes (2.3%)
FAS signaling pathway 1 gene (1.2%)
p38 MAPK pathway 1 gene (1.2%)
p53 pathway by glucose deprivation 1 gene (1.2%)
Plasminogen activating cascade 1 gene (1.2%)
JAK/STAT signaling pathway 1 gene (1.2%)
MYO signaling pathway 1 gene (1.2%)
Hypoxia response via HIF activation 1 gene (1.2%)
p53 pathway feedback loops 1 1 gene (1.2%)
Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway 1 gene (1.2%)
Axon guidance mediated by netrin 1 gene (1.2%)
ALP23B signaling pathway 1 gene (1.2%)
Activin beta signaling pathway 1 gene (1.2%)
BMP/activin signaling pathway-drosophila 1 gene (1.2%)
Angiotensin ii-stimulated signaling through g proteins and beta-arrestin 1 gene (1.2%)
Tab.7  
Fig.7  
S. No. Disease class
1 Gastrointestinal cancer
2 Lung cancer
3 Skin cancer
4 Prostate cancer
5 Bladder cancer
6 Breast cancer
7 Liver cancer
8 Renal cancer
9 Cardiovascular diseases
10 Diabetic nephropathies
11 Brain cancer
12 Neuroblastoma
13 Lymphoma
14 Lupus erythematosus, systemic
15 Oral cancer
16 Bone cancer
17 Ovarian cancer
18 Uterine cervical cancer
Tab.8  
Fig.8  
1 Agarwal V, Bell G W, Nam J W, Bartel D P (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4: e05005
https://doi.org/10.7554/eLife.05005 pmid: 26267216
2 Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297
https://doi.org/10.1016/S0092-8674(04)00045-5 pmid: 14744438
3 Chang-Hao Tsao S, Behren A, Cebon J, Christophi C (2015). The role of circulating microRNA in hepatocellular carcinoma. Front Biosci (Landmark Ed), 20(1): 78–104
https://doi.org/10.2741/4299 pmid: 25553441
4 Dalmay T, Edwards D R (2006). MicroRNAs and the hallmarks of cancer. Oncogene, 25(46): 6170–6175
https://doi.org/10.1038/sj.onc.1209911 pmid: 17028596
5 Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang M W, Hackl M, Monteforte R, Kühnel H, Schosserer M, Gruber F, Tschachler E, Scheideler M, Grillari-Voglauer R, Grillari J, Wieser M (2013). High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell, 12(3): 446–458
https://doi.org/10.1111/acel.12069 pmid: 23496142
6 Esquela-Kerscher A, Slack F J (2006). Oncomirs- microRNAs with a role in cancer. Nat Rev Cancer, 6(4): 259–269
https://doi.org/10.1038/nrc1840 pmid: 16557279
7 Filipowicz W, Bhattacharyya S N, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9(2): 102–114
https://doi.org/10.1038/nrg2290 pmid: 18197166
8 Gan J, Qu Y, Li J, Zhao F, Mu D (2015). An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci, 26(2): 225–237
https://doi.org/10.1515/revneuro-2014-0062 pmid: 25719305
9 Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce C M, Bolondi L, Negrini M (2008). MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med, 12(6a 6A): 2189–2204
https://doi.org/10.1111/j.1582-4934.2008.00533.x pmid: 19120703
10 Griffiths-Jones S (2006). miRBase: the microRNA sequence database. Methods Mol Biol, 342: 129–138
pmid: 16957372
11 Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308): 835–840
https://doi.org/10.1038/nature09267 pmid: 20703300
12 Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100(1): 57–70
https://doi.org/10.1016/S0092-8674(00)81683-9 pmid: 10647931
13 He H, Baldwin G S (2008). Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins. Int J Biochem Cell Biol, 40(10): 2018–2022
https://doi.org/10.1016/j.biocel.2008.05.002 pmid: 18565785
14 He H, Yim M, Liu K H, Cody S C, Shulkes A, Baldwin G S (2008). Involvement of G proteins of the Rho family in the regulation of Bcl-2-like protein expression and caspase 3 activation by Gastrins. Cell Signal, 20(1): 83–93
https://doi.org/10.1016/j.cellsig.2007.08.018 pmid: 17936584
15 He X, Zhang J (2006). Why do hubs tend to be essential in protein networks? PLoS Genet, 2(6): e88
https://doi.org/10.1371/journal.pgen.0020088 pmid: 16751849
16 Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13
https://doi.org/10.1093/nar/gkn923 pmid: 19033363
17 Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57
https://doi.org/10.1038/nprot.2008.211 pmid: 19131956
18 Hulsen T, de Vlieg J, Alkema W (2008). BioVenn- a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics, 9(1): 488
https://doi.org/10.1186/1471-2164-9-488 pmid: 18925949
19 Huntzinger E, Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 12(2): 99–110
https://doi.org/10.1038/nrg2936 pmid: 21245828
20 Hwang H W, Mendell J T (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 94(6): 776–780
https://doi.org/10.1038/sj.bjc.6603023 pmid: 16495913
21 Iorio M V, Ferracin M, Liu C G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo J P, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin G A, Querzoli P, Negrini M, Croce C M (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16): 7065–7070
https://doi.org/10.1158/0008-5472.CAN-05-1783 pmid: 16103053
22 Jung H J, Suh Y (2012). MicroRNA in Aging: From Discovery to Biology. Curr Genomics, 13(7): 548–557
https://doi.org/10.2174/138920212803251436 pmid: 23633914
23 Kang J, Pervaiz S (2013). Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol, 2: 206
https://doi.org/10.3389/fonc.2012.00206 pmid: 23316476
24 Kayani Mu, Kayani M A, Malik F A, Faryal R (2011). Role of miRNAs in breast cancer. Asian Pac J Cancer Prev, 12(12): 3175–3180
pmid: 22471449
25 Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso M A (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014: 149185
https://doi.org/10.1155/2014/149185 pmid: 24901008
26 Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843–854
https://doi.org/10.1016/0092-8674(93)90529-Y pmid: 8252621
27 Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20
https://doi.org/10.1016/j.cell.2004.12.035 pmid: 15652477
28 Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res, 42(Database issue): D1070–D1074
https://doi.org/10.1093/nar/gkt1023 pmid: 24194601
29 López-Otín C, Blasco M A, Partridge L, Serrano M, Kroemer G (2013). The hallmarks of aging. Cell, 153(6): 1194–1217
https://doi.org/10.1016/j.cell.2013.05.039 pmid: 23746838
30 Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043): 834–838
https://doi.org/10.1038/nature03702 pmid: 15944708
31 Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell M J, Kitano H (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res, 33(suppl_1):D284–8.
32 Mi H, Muruganujan A, Casagrande J T, Thomas P D (2013). Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 8(8): 1551–1566
https://doi.org/10.1038/nprot.2013.092 pmid: 23868073
33 Mulrane L, McGee S F, Gallagher W M, O’Connor D P (2013). miRNA dysregulation in breast cancer. Cancer Res, 73(22): 6554–6562
https://doi.org/10.1158/0008-5472.CAN-13-1841 pmid: 24204025
34 Palmero E I, de Campos S G, Campos M, de Souza N C, Guerreiro I D, Carvalho A L, Marques M M (2011). Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol, 34(3): 363–370
https://doi.org/10.1590/S1415-47572011000300001 pmid: 21931505
35 Ponnappan S, Ponnappan U (2011). Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal, 14(8): 1551–1585
https://doi.org/10.1089/ars.2010.3228 pmid: 20812785
36 Ro S, Park C, Young D, Sanders K M, Yan W (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res, 35(17): 5944–5953
https://doi.org/10.1093/nar/gkm641 pmid: 17726050
37 Rozengurt E, Walsh J H (2001). Gastrin, CCK, signaling, and cancer. Annu Rev Physiol, 63(1): 49–76
https://doi.org/10.1146/annurev.physiol.63.1.49 pmid: 11181948
38 Serpico D, Molino L, Di Cosimo S (2014). microRNAs in breast cancer development and treatment. Cancer Treat Rev, 40(5): 595–604
https://doi.org/10.1016/j.ctrv.2013.11.002 pmid: 24286642
39 Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11): 2498–2504
https://doi.org/10.1101/gr.1239303 pmid: 14597658
40 Srivastava I, Gahlot L K, Khurana P, Hasija Y (2016). dbAARD & AGP: A computational pipeline for the prediction of genes associated with age related disorders. J Biomed Inform, 60: 153–161
https://doi.org/10.1016/j.jbi.2016.01.004 pmid: 26836976
41 Takahashi R U, Miyazaki H, Ochiya T (2015). The roles of microRNAs in breast cancer. Cancers (Basel), 7(2): 598–616
https://doi.org/10.3390/cancers7020598 pmid: 25860815
42 Volinia S, Calin G A, Liu C G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt R L, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris C C, Croce C M (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103(7): 2257–2261
https://doi.org/10.1073/pnas.0510565103 pmid: 16461460
43 Wang L, Chadwick W, Park S S, Zhou Y, Silver N, Martin B, Maudsley S (2010). Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS Neurol Disord Drug Targets, 9(5): 651–660
https://doi.org/10.2174/187152710793361559 pmid: 20632963
44 Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 103(11): 4034–4039
https://doi.org/10.1073/pnas.0510928103 pmid: 16495412
45 Yip K W, Reed J C (2008). Bcl-2 family proteins and cancer. Oncogene, 27(50): 6398–6406
https://doi.org/10.1038/onc.2008.307 pmid: 18955968
46 Zhang L, Huang J, Yang N, Greshock J, Megraw M S, Giannakakis A, Liang S, Naylor T L, Barchetti A, Ward M R, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty P A, Weber B L, Coukos G (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA, 103(24): 9136–9141
https://doi.org/10.1073/pnas.0508889103 pmid: 16754881
[1] Supplementary Material 1 Download
[2] Supplementary Material 2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed