Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers of Energy and Power Engineering in China - Selected Publications from Chinese Universities  2008, Vol. 2 Issue (3): 354-358   https://doi.org/10.1007/s11708-008-0052-z
  本期目录
Parameter for judging reactivity of coal and coke
Parameter for judging reactivity of coal and coke
HE Hongzhou1, LUO Zhongyang2, CEN Kefa2
1.Institute for Energy & Power Engineering of Jimei University; 2.State Key Laboratory of Clean Energy Utilization;
 全文: PDF(101 KB)   HTML
Abstract:To eliminate the judgment error of char reactivity arising from different carbon content of samples, a new parameter called specific maximum weight loss rate was introduced. It is defined as the quotient of the maximum weight loss rate in non-isothermal thermogravimetric analysis (TGA) experiment to the carbon content of the corresponding sample. The reactivity of different kinds of coal, the reactivity of the same coal type with different lithotype, and the reactivity of the char with different carbon conversion rates were checked by using the specific maximum weight loss rate, and the results were analyzed and compared with those obtained by using other criteria. The results show that the specific maximum weight loss rate can be used as a commonality parameter to evaluate and distinguish the reactivity of different coal and char. The heating rate selected in TGA experiment has no effect on the judgment.
出版日期: 2008-09-05
 引用本文:   
. Parameter for judging reactivity of coal and coke[J]. Frontiers of Energy and Power Engineering in China - Selected Publications from Chinese Universities, 2008, 2(3): 354-358.
HE Hongzhou, LUO Zhongyang, CEN Kefa. Parameter for judging reactivity of coal and coke. Front. Energy, 2008, 2(3): 354-358.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-008-0052-z
https://academic.hep.com.cn/fie/CN/Y2008/V2/I3/354
1 Jenkins R G, Nandi S P, Walker P L, et al.. Reactivity of heat-treated coals in air at 500°C. Fuel, 1973, 52(3): 288–293.
doi:10.1016/0016‐2361(73)90059‐8
2 Tsai C Y, Scaroni Roni A W . Reactivity of bituminouscoal chars during the initial stage of pulverized-coal combustion. Fuel, 1987, 66(10): 1400–1406.
doi:10.1016/0016‐2361(87)90187‐6
3 Cai H Y, GÜell A J, Chatzakis J-Y, et al.. Combustion reactivity and morphological changein coal chars: effect of pyrolysis temperature, heating rate and pressure. Fuel, 1996, 75(1): 15–24.
doi:10.1016/0016‐2361(94)00192‐8
4 Alonso M J G, Borrego A G, Álvarez D, et al.. A reactivity study of chars obtained at differenttemperatures in relation to their petrographic characteristics. Fuel Processing Technology, 2001, 69(3): 257–272.
doi:10.1016/S0378‐3820(00)00146‐6
5 Russell N V, Beeley T J, Man C-K, et al.. Development of TG measurements of intrinsicchar combustion reactivity for industrial and research purposes. Fuel Processing Technology, 1998, 57(2): 113–130.
doi:10.1016/S0378‐3820(98)00077‐0
6 Davini P, Ghetti P, Bonfanti L, et al.. Investigation of the combustion of particlesof coal. Fuel, 1996, 75(9): 1083–1088.
doi:10.1016/0016‐2361(96)00073‐7
7 Best P E, Solomon P R, Serio M A . The relationship between char reactivity and physicaland chemical structural features. Preprints-American Chemical Socciety, Division Fuel Chemistry, 1987, 32(4): 138–l46
8 SØrensen L H, Gjernes E, Jessen T, et al.. Determination of reactivity parameters of modelcarbons, cokes and flame-chars. Fuel, 1996, 75(1): 31–38.
doi:10.1016/0016‐2361(95)00213‐8
9 Cumming J W . Reactivity assessment of coal via a weighted mean activation energy. Fuel, 1984, 63(10): 1436–1440.
doi:10.1016/0016‐2361(84)90353‐3
10 Chen Xiao-ping, Gu Xiao-bing, Duan Yu-feng, et al.. Investigation on the combustion characteristicsof semi-coke at elevated pressure. Journalof Engineering Thermophysics, 2004, 25(2): 345–347 (in Chinese)
11 Das T K . Thermogravimetric characterization of maceral concentrates of Russiancoking coals. Fuel, 2001, 80(1): 97–106.
doi:10.1016/S0016‐2361(00)00058‐2
12 He Hong-zhou, Luo Zhong-yang, Fang Meng-xiang, et al.. Thermal Fragmentation of Longyan anthracitewith different lithotypes. Journal of FuelChemistry and Technology, 2005, 33(5): 534–539 (in Chinese)
13 Morgan P A, Robertson S D, Unsworth J F . Combustion studies by thermogravimetric analysis. Fuel, 1986, 65(11): 1546–1551.
doi:10.1016/0016‐2361(86)90331‐5
14 He Hong-zhou, Luo Zhong-yang, Fang Meng-xiang, et al.. Experimental research on the particle &combustion properties of Longyan anthracite with different lithotypes. Journal of Fuel Chemistry and Technology, 2006, 34(1): 15–19 (in Chinese)
15 Fuertes A B, Marbán G, Pis J J . Combustion kinetics of coke particles in a fluidizedbed reactor. Fuel Processing Technology, 1994, 38(3): 193–210.
doi:10.1016/0378‐3820(94)90048‐5
16 Gu Fan, Xu Jin-yuan, Shen Hong-mei . Study on the pore Characteristics of coal particle duringcombustion. Journal of Fuel Chemistry andTechnology, 1993, 21(4): 425–429 (in Chinese)
17 Hurt R H, Gibbins J R . Residual carbon from pulverizedcoal fired boilers: 1. Size distribution and combustion reactivity. Fuel, 1995, 74(4): 471–480.
doi:10.1016/0016‐2361(95)98348‐I
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed