Thermo-fluidic devices and materials inspired
from mass and energy transport phenomena in biological system
Thermo-fluidic devices and materials inspired
from mass and energy transport phenomena in biological system
Jian XIAO 1, Jing LIU 2,
1.Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences; 2.School of Medicine,
Biomedical Engineering Department, Tsinghua University;
Abstract:Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to presenting a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechanisms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve various fields related to human life in the near future.
. Thermo-fluidic devices and materials inspired
from mass and energy transport phenomena in biological system[J]. Front. Energy, 2009, 3(1): 47-59.
Jian XIAO , Jing LIU , . Thermo-fluidic devices and materials inspired
from mass and energy transport phenomena in biological system. Front. Energy, 2009, 3(1): 47-59.
Copeland J G, Smith R G, Arabia F A, et al. The CardioWest total artificial heart as a bridgeto transplantation. Semin Thorac CardiovascSurg, 2000, 120(3): 238–242
Puers R, Vandevoorde G. Recent progress on transcutaneousenergy transfer for total artificial heart systems. Artif Organs, 2001, 25(5): 400–405 doi: 10.1046/j.1525-1594.2001.025005400.x
Yang M, Zhang Z, Hahn C. Assessing the resistance to calcification of polyurethanemembranes used in the manufacture of ventricles for a totally implantableartificial heart. J Biomed Mater Res, 1999, 48(5): 648–659 doi: 10.1002/(SICI)1097-4636(1999)48:5<648::AID-JBM8>3.0.CO;2-6
Holmes E C. The AbioCor totally implantable replacement heart. Journal of Cardiovascular Nursing, 2003, 18(1): 23–29
Mussivand T, Holmes K S, Hum A, et al. Transcutaneous energy transfer with voltageregulation for rotary blood pumps. ArtifOrgans, 1996, 20(6): 621–624 doi: 10.1111/j.1525-1594.1996.tb04492.x
National Kidney Foundation. 2007Annual Report. USA, 2007
Kolff W J. Dialysis in treatment of uremia: artificial kidney and peritoneallavage. AMA Arch Intern MedTrans, 1954, 94(1): 142–160
Noordwijk J V. Dialysing for life: The development of the artificial kidney. The New England Journal of Medicine, 2001, 345(11): 844–845 doi: 10.1056/NEJM200109133451120
Quinton W, Dillard D, Scribner B H. Cannulation of blood vessels for prolonged hemodialysis. Hemodialysis International, 2004, 8(1): 6–9 doi: 10.1111/j.1492-7535.2004.00080.x
Saito A, Aung T, Sekiguchi K, et al. Present status and perspectives of bioartificialkidneys. J Artif Organs, 2006, 9(3): 130–135 doi: 10.1007/s10047-006-0336-1
Humes H D, Szczypka M S. Advances in cell therapyfor renal failure. Transpl Immunol, 2004, 12(3–4): 219–227 doi: 10.1016/j.trim.2003.12.015
Humes H D, MacKay S M, Funke A J, et al. Tissue engineering of a bioartificial renaltubule assist device: in vitro transport and metabolic characteristics. Kidney Int, 1999, 55(6): 2502–2514 doi: 10.1046/j.1523-1755.1999.00486.x
Humes H D. Bioartificial kidney for full renal replacement therapy. Semin Nephrol, 2000, 20(1): 71–82
Schmidt-Nielsen K. Thesalt-secreting gland of marine birds. Circulation, 1960, 21(5): 955–967
Marples B. Thestructure and development of the nasal glands of birds. Proceedingsof the Zoological Society of London. Greens: Longmans, 1932
Fange R, Schmidt-Nielsen K, Osaki H. The salt gland of the herring gull. Biological Bulletin, 1958, 115(2): 162–171 doi: 10.2307/1539022
Scothorne R J. The nasal glands of birds: a histological and histochemical studyof the inactive gland in the domestic duck. J Anat, 1959, 93(2): 246–256
Andrews S B, Mazurkiewicz J E, Kirk R G. The distribution of intracellular ions in the avian saltgland. J Cell Biol, 1983, 96(5): 1389–1399 doi: 10.1083/jcb.96.5.1389
Fange R, Schmidt-Nielsen K, Robinson M. Control of secretion from the avian salt gland. Am J Physiol, 1958, 195(2): 321–326
Ihler G M, Glew R H, Schnure F W. Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A, 1973, 70(9): 2663–2666 doi: 10.1073/pnas.70.9.2663
Magnani M, Rossi L, Fraternale A, et al. Erythrocyte-mediated delivery of drugs, peptidesand modified oligonucleotides. Gene Ther, 2002, 9(11): 749–751 doi: 10.1038/sj.gt.3301758
Green R, Miller J, Crosby W. Enhancement of iron chelation by desferrioxamine entrappedin red blood cell ghosts. Blood, 1981, 57(5): 866–872
Talwar N, Jain N K. Erythrocytes as carriersof metronidazole: in-vitro characterization. Drug Dev Ind Pharm, 1992, 18(16): 1799–1812 doi: 10.3109/03639049209040903
Deloach J, Ihler G. A dialysis procedure forloading erythrocytes with enzymes and lipids. Biochim Biophys Acta, 1977, 496(1): 136–145
Jenner D J, Lewis D A, Pitt E, et al. The effect of intravenous administration ofcorticosteroids encapsulated in intact erythrocytes on adyuvant arthritisin the rat. Br J Pharmacol, 1981, 73: 212–213
Franco R, Barker R, Weiner M. The nature and kinetics of red cell membrane changesduring the osmotic pulse method of incorporating xenobiotics intoviable red cells. Adv Biosci, 1987, 67(1): 63–72
Tsong T Y. Electroporation of cell membranes. BiophysJ, 1991, 60(2): 297–306
Kitao T, Hattori K. Erythrocyte entrapment ofdaunomycin by amphotericin B without hemolysis. Cancer Res, 1980, 40(4): 1351–1353
Garin M I, Lopez R M, Sanz S, et al. Erythrocytes as carriers for recombinant humanerythropoietin. Pharm Res, 1996, 13(6): 869–874 doi: 10.1023/A:1016049027661
Ben-Bassat I, Bensch K G, Schrier S L. Drug-induced erythrocyte membrane internalization. J Clin Invest, 1972, 51(7): 1833–1844 doi: 10.1172/JCI106985
Sprandel U, Way J L. Erythrocytes as Drug Carriersin Medicine. New York: Plenum Press, 1997, 13–24
Nardin A, Lindorfer M A, Taylor R P. How are immune complexes bound to the primate erythrocytecomplement receptor transferred to acceptor phagocytic cells? Mol Immunol, 1999, 36(13–14): 827–835 doi: 10.1016/S0161-5890(99)00103-0
Murciano J C, Medinilla S, Eslin D, et al. Prophylactic fibrinolysis through selectivedissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol, 2003, 21(8): 891–896 doi: 10.1038/nbt846
Kreuter J. Evaluationof nanoparticles as drug-delivery systems. I. Preparation methods.Pharm Acta Helvetiae, 1983, 58: 196–209
Zhang X, Burt H. Diblock copolymers of poly(DL-lactide)-block-methoxy poly (ethylene glycol) as mecillar carrierof taxol. Pharm Res, 1995, 12(9 Suppl): S265
Wagner E, Curiel D, Cotten M. Delivery of drugs, protein and genes into cells usingtransferrin as a ligand for receptor-mediated endocytosis. Adv Drug Del Rev, 1994, 14(1): 113–135 doi: 10.1016/0169-409X(94)90008-6
Yokoyama M. Drugtargeting with nano-sized carrier systems. J Artif Organs, 2005, 8(2): 77–84 doi: 10.1007/s10047-005-0285-0
Maeda H. Theenhanced permeability and retention (EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul, 2001, 41(1): 189–207 doi: 10.1016/S0065-2571(00)00013-3
Widder K J and Senyei A E. Magnetic microspheres: avehicle for selective targeting of drugs. Pharmacol Ther, 1983, 20(3): 377–395 doi: 10.1016/0163-7258(83)90033-5
Weinstein J N, Magin R L, Yatvin M B and Zaharko D S. Liposomes and local hyperthermia: selective delivery of methotrexateto heated tumors. Science, 1979, 204(4389): 188–191 doi: 10.1126/science.432641
Goodnough L T, Shander A, Brecher M E. Transfusion medicine: looking to the future. Lancet, 2003, 361(9352): 161–169 doi: 10.1016/S0140-6736(03)12195-2
Hill S E. Oxygen therapeutics–Current concepts. Can J Anaesth, 2001, 48(4 Suppl): S32–40
Rabiner S F, O'Brien K, Peskin G W, et al. Further studies with stroma-free hemoglobinsolution. Ann Surg, 1970, 171(4): 615–622 doi: 10.1097/00000658-197004000-00020
Hess J R. Blood substitutes. Semin Hematol, 1996, 33(4): 369–378
Clark L C Jr, Gollan F. Survival of mammals breathingorganic liquids equilibrated with oxygen at atmospheric pressure. Science, 1966, 152(730): 1755–1756 doi: 10.1126/science.152.3730.1755
Mitsuno T, Ohyanagi H, Naito R. Clinical studies of a perfluorochemical whole blood substitute(Fluosol-DA) Summary of 186 cases. AnnSurg, 1982, 195(1): 60–69 doi: 10.1097/00000658-198201001-00010
Jahr J S, Nesargi S B, Lewis K, et al. Blood substitutes and oxygen therapeutics: anoverview and current status. Am J Ther, 2002, 9(5): 437–443 doi: 10.1097/00045391-200209000-00012
Petrunkevitch A. Contributionsto our knowledge of the anatomy and relationships of spiders. Ann Ent Soc Amer, 1909, 2(1): 11–21
Ellis C H. The mechanism of extension in the legs of spiders. Biol Bull, 1944, 86(1): 41–50 doi: 10.2307/1537950
Parry D A, Brown R H J. The hydraulic mechanism ofthe spider leg. J Exp Biol, 1959, 36(2): 423–433
Parry D A, Brown R H J. The jumping mechanism ofsalticid spiders. J Exp Biol, 1959, 36(4): 654–664
Stewart D M, Martin A W. Blood pressure in the tarantula,Dugesiella hentzi. J Comp Physiol, 1974, 88(2): 141–172 doi: 10.1007/BF00695405
Ruiz-Manresa F, Grundfest H. Synaptic electrogenesis ineel electroplaques. J Gen Physiol, 1971, 57(1): 71–92 doi: 10.1085/jgp.57.1.71
Machado R D, de Souza W, Pereira G C, et al. On the fine structure of the electrocyte ofElectrophorus electricus L. Cell TissueRes, 1976, 174(3): 355–366 doi: 10.1007/BF00220681
Caputi A A. The electric organ discharge of pulse gymnotiforms: the transformationof a simple impulse into a complex spatiotemporal electromotor pattern. The Journal of Experimental Biology, 1999, 202(10): 1229–1241
Bauman A, Changeux J, Benda P, et al. Purification of membrane fragments derived fromthe non excitable surface of the eel electroplax. FEBS Lett, 1970, 8(3): 145–148 doi: 10.1016/0014-5793(70)80248-4
Somlo C, de Souza W, Machado R D, et al. Biochemical and cytochemical localization ofATPases on the membranes of the electrocyte of Electrophorus electricus. Cell Tissue Res, 1977, 185(1): 115–128 doi: 10.1007/BF00226673
Glynn I M. Transport Adenosinetriphosphatase' in electric organ. The relationbetween ion transport and oxidative phosphorylation.J Physiol, 1963, 169(2): 452–465
Dudai Y, Herzberg M, Silman I. Molecular structures of acetylcholinesterase from electricorgan tissue of the electric eel. ProcNatl Acad Sci USA, 1973, 70(9): 2473–2476 doi: 10.1073/pnas.70.9.2473