Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Front. Energy  2009, Vol. 3 Issue (3): 262-288   https://doi.org/10.1007/s11708-009-0015-z
  Research articles 本期目录
Emerging technologies to power next generation mobile electronic devices using solar energy
Emerging technologies to power next generation mobile electronic devices using solar energy
Dewei JIA 1, Yubo DUAN 2, Jing LIU 3,
1.Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; 2.Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; 3.Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;Biomedical Engineering Department, School of Medicine, Tsinghua University, Beijing 100084, China;
 全文: PDF(868 KB)  
Abstract:Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples’ lives. However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation. In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.
Key wordsphotovoltaic conversion    energy harvesting    solar cell    maximum power point track algorithm    PV electricity storage    mobile/standalone PV application
出版日期: 2009-09-05
 引用本文:   
. Emerging technologies to power next generation mobile electronic devices using solar energy [J]. Front. Energy, 2009, 3(3): 262-288.
Dewei JIA , Yubo DUAN , Jing LIU , . Emerging technologies to power next generation mobile electronic devices using solar energy . Front. Energy, 2009, 3(3): 262-288.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-009-0015-z
https://academic.hep.com.cn/fie/CN/Y2009/V3/I3/262
Donelan J M, Li Q, Naing V,et al. Biomechanical energy harvesting: Generating electricityduring walking with minimal user effort. Science, 2008, 319(5864): 807―810

doi: 10.1126/science.1149860
Ramsay M J and Clark W W. Piezoelectric energy harvestingfor bio MEMS applications. Smart Structuresand Materials, 2001, 4332: 429―438
Ren K, Liu Yiming, Hofmann H,et al. An active energy harvesting scheme with an electroactivepolymer. Applied Physics Letters, 2007, 91(13): 1329

doi: 10.1063/1.2793172
Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibrationenergy harvesting. Journal of Micromechanicsand Microengineering, 2007, 17(7): 1257―1265

doi: 10.1088/0960-1317/17/7/007
Paradiso J A and Starner T. Energy scavenging for mobileand wireless electronics. IEEE PervasiveComputing, 2005, 4(1): 18―27

doi: 10.1109/MPRV.2005.9
Shenck N S and Paradiso J A. Energy scavenging with shoe-mountedpiezoelectrics. IEEE Micro, 2001, 21(3): 30―42

doi: 10.1109/40.928763
Huang W S, Tzeng K E, Cheng M C, et al. Design and fabrication of a vibrational micro-generatorfor wearable MEMS. In: Proc EurosensorsXVII Guimaraes. Portugal: IEEE, 2003, 695―697
Weber J, Potje-Kamloth K, Haase F,et al. Coin-size coiled-up polymer foil thermoelectricpower generator for wearable electronics. Sensors and Actuators A: Physical, 2006, 132(1): 325―330

doi: 10.1016/j.sna.2006.04.054
Green M A. Photovoltaic principles. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14(1,2): 11―17
Conibeer G, Green M, Corkish R,et al. Silicon nanostructures for third generation photovoltaicsolar cells. Thin Solid Films, 2006, 511―512: 654―662

doi: 10.1016/j.tsf.2005.12.119
Green M A. Third generation photovoltaics: solar cells for 2020 and beyond. Physica E: Low-dimensionalSystems and Nanostructures, 2002, 14(1,2): 65―70
Duran Sahin A, Dincer I and Rosen M A. Thermodynamic analysis of solar photovoltaic cell systems. Solar Energy Materials and Solar Cells, 2007, 91(2,3): 153―159
Bisquert J, Garcia-Canadas J, Mora-Sero I,et al. Comparative analysis of photovoltaic principlesgoverning dye-sensitized solar cells and p-n junctions.In: Proceedings of SPIE. Bellingham: SPIE, 2003, 49―59
Bisquert J, Cahen D, Hodes G,et al. Physical chemical principles of photovoltaicconversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B, 2004, 108(24): 8106―8118

doi: 10.1021/jp0359283
Nelson J. ThePhysics of Solar Cells. London: Imperial College Press, 2003, 356
Shockley W. Problemsrelated top-n junctions in silicon. CzechoslovakJournal of Physics, 1961, 11(2): 81―121

doi: 10.1007/BF01688613
King R R, Karam N H, Ermer J H,et al. Next-generation, high-efficiency III-V multijunctionsolar cells. In: Photovoltaic SpecialistsConference, 2000 Conference Record of the Twenty-Eighth IEEE. Anchorage: IEEE, 2000, 998―1001
Archer M J, Law D C, Mesropian S,et al. GaInP/GaAs dual junction solar cells on Ge/Siepitaxial templates. Applied Physics Letters, 2008, 92(10): 103503-3

doi: 10.1063/1.2887904
King R, Law D, Edmondson K,et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunctionsolar cells. Applied Physics Letters, 2007, 90(18): 183516

doi: 10.1063/1.2734507
Schaller R, Agranovich V and Klimov V. High-efficiency carrier multiplicationthrough direct photogeneration of multi-excitons via virtual single-excitonstates. Nature Physics, 2005, 1(3): 189

doi: 10.1038/nphys151
Schaller R, Petruska M and Klimov V. Effect of electronic structure on carriermultiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters, 2005, 87(25): 253102

doi: 10.1063/1.2142092
Murphy J, Beard M, Norman A,et al. PbTe colloidal nanocrystals: synthesis, characterization,and multiple exciton generation. Journalof American Chemistry Society, 2006, 128(10): 3241―3247

doi: 10.1021/ja0574973
Nozik A. Multipleexciton generation in semiconductor quantum dots. Chemical Physics Letters, 2008, 457(1―3): 3―11

doi: 10.1016/j.cplett.2008.03.094
Brendel R, Werner J and Queisser H. Thermodynamic efficiency limits for semiconductorsolar cells with carrier multiplication. Solar Energy Materials and Solar Cells, 1996, 72(24): 419―425

doi: 10.1016/0927-0248(95)00125-5
Hanna M and Nozik A. Solar conversion efficiencyof photovoltaic and photoelectrolysis cells with carrier multiplicationabsorbers. Journal of Applied Physics, 2006, 100(7): 074510

doi: 10.1063/1.2356795
Werner J, Brendel R and Queisser H. Radiative efficiency limit of terrestrialsolar cells with internal carrier multiplication. Applied Physics Letters, 1995, 67(10): 1028

doi: 10.1063/1.114719
Beard M C, Knutsen K P, Yu P, et al. Multiple exciton generation in colloidal siliconnanocrystals. Nano Lett, 2007, 7(8): 2506―2512

doi: 10.1021/nl071486l
Schaller R D, Petruska M A and Klimov V I. Effect of electronic structure on carriermultiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters, 2005, 87(25): 253102-3

doi: 10.1063/1.2142092
Nair G and Bawendi M. Carrier multiplication yieldsof CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Physical Review B, 2007, 76(8): 81304

doi: 10.1103/PhysRevB.76.081304
Pijpers J H, Hendry E, Milder T W,et al. Carrier multiplication and its reduction by photodopingin colloidal InAs quantum dots. J PhysChem C, 2007, 111(11): 4146―4152

doi: 10.1021/jp066709v
Trinh M T, Houtepen J, Schins J M,et al. In spite of recent doubts carrier multiplicationdoes occur in PbSe nanocrystals. Nano Lett, 2008, 8(6): 1713―1718

doi: 10.1021/nl0807225
Wufel P, Brown S, Humphrey T E,et al. Particle conservation in the hot-carrier solarcell. Progress in Photovoltaics: Researchand Applications, 2005, 13(4): 277―285

doi: 10.1002/pip.584
Hanna M C, Lu Z, Nozik J. Hot carrier solar cells. In: Future Generation Photovoltaic Technologies. Denver, Colorado: AIP, 1997, 309―316
Green M A. Recent developments in photovoltaics. Solar Energy, 2004, 76(1―3): 3―8

doi: 10.1016/S0038-092X(03)00065-3
Mart A. Nextgeneration photovoltaics: High efficiency through full spectrum utilization. London: Instof Physics Pub Inc, 2003, 328
Peumans P, Yakimov A and Forrest S R. Small molecular weight organic thin-filmphotodetectors and solar cells. Journalof Applied Physics, 2003, 93(7): 3693―3723

doi: 10.1063/1.1534621
Green M. SiliconSolar Cells: Advanced principles and practice. Sydney: Bridge Printery, 1995, 130
Crabtree G W, Lewis N S. Solar energy conversion. Physics Today, 2007, 60(3): 37―42

doi: 10.1063/1.2718755
Green M A. The future of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 127―139

doi: 10.1002/(SICI)1099-159X(200001/02)8:1<127::AID-PIP311>3.0.CO;2-D
Green M A. Crystalline and thin-film silicon solar cells: state of the artand future potential. Solar Energy, 2003, 74(3): 181―192

doi: 10.1016/S0038-092X(03)00187-7
Klein S, Finger F, Carius R,et al. Intrinsic amorphous and microcrystalline siliconby hot-wire-deposition for thin film solar cell applications. Thin Solid Films, 2001, 395(1,2): 305―309
Wu X. High-efficiencypolycrystalline CdTe thin-film solar cells. Solar Energy, 2004, 77(6): 803―814

doi: 10.1016/j.solener.2004.06.006
Dimmler B, Powalla M, Schock H W. CIS-based thin-film photovoltaic modules: Potential andprospects. Progress in Photovoltaics: Researchand Applications, 2002, 10(2): 149―157

doi: 10.1002/pip.413
Eberspacher C, Fredric C, Pauls K,et al. Thin-film CIS alloy PV materials fabricated usingnon-vacuum, particles-based techniques. Thin Solid Films, 2001, 387(1,2): 18―22
Ramanathan K, Contreras M, Perkins C,et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSethin-film solar cells. Progress in Photovoltaics:Research and Applications, 2003, 11(4): 225―230

doi: 10.1002/pip.494
Wennerberg J, Kessler J, Stolt L. Cu (In, Ga) Se2 based thin-film photovoltaic modulesoptimized for long-term performance. SolarEnergy Materials and Solar Cells, 2003, 75(1,2): 47―55
Stolt L, Hedstrom J, Kessler J,et al. ZnO/CdS/CuInSe2 thin-film solar cells with improvedperformance. Applied Physics Letters, 1993, 62(6): 597―599

doi: 10.1063/1.108867
Chopra K L, Paulson P D, Dutta V. Thin-film solar cells: An overview. Progress in Photovoltaics: Research and Applications, 2004, 12(2,3): 69―92
Green M A. Third generation photovoltaics: Ultra-high conversion efficiencyat low cost. Progress in Photovoltaics:Research and Applications, 2001, 9(2): 123―135

doi: 10.1002/pip.360
Liu J, Tanaka T, Sivula K,et al. Employing end-functional polythiophene to controlthe morphology of banocrystal-polymer composites in hybrid solar cells. Journal of American Chemical Society, 2004, 126(21): 6550―6551

doi: 10.1021/ja0489184
Green M A, Emery K, Hishikawa Y,et al. Solar cell efficiency tables (version 30). Progress in Photovoltaics: Research and Applications, 2007, 15(1): 425―430

doi: 10.1002/pip.781
Gratzel M. Conversionof sunlight to electric power by nanocrystalline dye-sensitized solarcells. Journal of Photochemistry &Photobiology, A: Chemistry, 2004, 164(1―3): 3―14

doi: 10.1016/j.jphotochem.2004.02.023
Gratzel M. Dye-sensitizedsolar cells. Journal of Photochemistryand Photobiology C: Photochemistry Reviews, 2003, 4(2): 145―153

doi: 10.1016/S1389-5567(03)00026-1
Gratzel M. Appliedphysics: Solar cells to dye for. Nature, 2003, 421(6923): 586―587

doi: 10.1038/421586a
Cahen D, Hodes G, Gratzel M,et al. Nature of photovoltaic action in dye-sensitizedsolar cells. J Phys Chem B, 2000, 104(9): 2053―2059

doi: 10.1021/jp993187t
Fan X, Wang F, Chu Z,et al. Conductive mesh based flexible dye-sensitizedsolar cells. Applied Physics Letters, 2007, 90(7): 073501-3

doi: 10.1063/1.2475623
Fan B, Hany R, Moser J-E,et al. Enhanced cyanine solar cell performance uponoxygen doping. Organic Electronics, 2008, 9(1): 85―94

doi: 10.1016/j.orgel.2007.09.008
Fan X, Chu Z, Wang F,et al. Wire-shaped flexible dye-sensitized solar cells. Advanced Materials, 2008, 20(3): 592―595

doi: 10.1002/adma.200701249
Fan X, Chu Z, Chen L,et al. Fibrous flexible solid-type dye-sensitized solarcells without transparent conducting oxide. Applied Physics Letters, 2008, 92(11): 113510-3

doi: 10.1063/1.2891051
Wrfel P. Photovoltaicprinciples and organic solar cells. CHIMIAInternational Journal for Chemistry, 2007,61(12): 770―774

doi: 10.2533/chimia.2007.770
Jenekhe S A, Yi S. Efficient photovoltaic cellsfrom semiconducting polymer heterojunctions. Applied Physics Letters, 2000, 77(17): 2635―2637

doi: 10.1063/1.1320022
Yang F, Shtein M and Forrest S. Controlled growth of a molecular bulkheterojunction photovoltaic cell. NatureMaterials, 2005, 4(1): 37―41

doi: 10.1038/nmat1285
Li G, Shrotriya V, Huang J,et al. High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864―868

doi: 10.1038/nmat1500
Rostalski J, Meissner D. Photocurrent spectroscopyfor the investigation of charge carrier generation and transport mechanismsin organic p/n-junction solar cells. SolarEnergy Materials and Solar Cells, 2000, 63(1): 37―47

doi: 10.1016/S0927-0248(00)00018-0
Xue J, Uchida S, Rand B,et al. 4.2% efficient organic photovoltaic cells withlow series resistances. Applied PhysicsLetters, 2004, 84(16): 3013―3016

doi: 10.1063/1.1713036
Robinson R D, Sadtler B, Demchenko D O,et al. Spontaneous superlattice formation in nanorodsthrough partial cation exchange. Science, 2007, 317(5836): 355―358

doi: 10.1126/science.1142593
Yin Y, Rioux R M, Erdonmez C K,et al. Formation of hollow nanocrystals through thenanoscale kirkendall effect. 2004, 304(5671): 711―714
Huynh W U, Dittmer J J and Alivisatos a P. Hybrid nanorod-polymer solarcells. Science, 2002, 295(5564): 2425―2427

doi: 10.1126/science.1069156
Huynh W U, Dittmer J J, Teclemariam N,et al. Charge transport in hybrid nanorod-polymer compositephotovoltaic cells. Physical Review B, 2003, 67(11): 115326

doi: 10.1103/PhysRevB.67.115326
Huynh W U, Dittmer J J, Libby W C,et al. Controlling the morphology of nanocrystal-polymercomposites for solar cells. Advanced FunctionalMaterials, 2003, 13(1): 73―79

doi: 10.1002/adfm.200390009
Gur I, Fromer N A, Geier M L,et al. Air-stable all-inorganic nanocrystal solar cellsprocessed from solution. Science, 2005, 310(5747): 462―465

doi: 10.1126/science.1117908
Ikegami T, Maezono T, Nakanishi F,et al. Estimation of equivalent circuit parameters ofPV module and its application to optimal operation of PV system. Solar Energy Materials and Solar Cells, 2001, 67(1―4): 389―395

doi: 10.1016/S0927-0248(00)00307-X
Ranuarez J C, Garcia Sanchez FJ, Ortiz-Conde A. Procedure for determiningdiode parameters at very low forward voltage. Solid-State Electronics, 1999, 43(12): 2129―2133

doi: 10.1016/S0038-1101(99)00181-1
Ortiz-Conde A, Estrada M, Cerdeira A,et al. Modeling real junctions by a series combinationof two ideal diodes with parallel resistance and its parameter extraction. Solid-State Electronics, 2001, 45(2): 223―228

doi: 10.1016/S0038-1101(01)00011-9
Verschraegen J, Burgelman M, Penndorf J. Temperature dependence of the diode ideality factor inCuInS2-on-Cu-tape solar cells. Thin SolidFilms, 2005, 480―481: 307―311

doi: 10.1016/j.tsf.2004.11.006
Hamdy M A, Call R L. The effect of the diode idealityfactor on the experimental determination of series resistance of solarcells. Solar Cells, 1987, 20(2): 119―126

doi: 10.1016/0379-6787(87)90036-6
Haouari-Merbah M, Belhamel M, Tobes I,et al. Extraction and analysis of solar cell parametersfrom the illuminated current-voltage curve. Solar Energy Materials and Solar Cells, 2005, 87(1―4): 225―233
Ortiz-Conde A, Garc-Sanchez F J, Muci J. New method to extract the model parameters of solar cellsfrom the explicit analytic solutions of their illuminated I-V characteristics. Solar Energy Materials and Solar Cells, 2006, 90(3): 352―361

doi: 10.1016/j.solmat.2005.04.023
Hussein R, Borchert D, Grabosch G,et al. Dark I-V-T measurements and characteristics of(n) a-Si/(p) c-Si heterojunction solar cells. Solar Energy Materials and Solar Cells, 2001, 69(2): 123―129

doi: 10.1016/S0927-0248(00)00385-8
Radziemska E. DarkI-U-T measurements of single crystalline silicon solar cells. Energy Conversion and Management, 2005, 46(9-10): 1485―1494

doi: 10.1016/j.enconman.2004.08.004
Kaminski A, Marchand J J, Laugier A. I-V methods to extract junction parameters with specialemphasis on low series resistance. Solid-StateElectronics, 1999, 43(4): 741―745

doi: 10.1016/S0038-1101(98)00338-4
Wilson R, Young A. The embodied energy paybackperiod of photovoltaic installations applied to buildings in the U.K. Building and Environment, 1996, 31(4): 299―305

doi: 10.1016/0360-1323(95)00053-4
Lu L, Yang H X. A study on simulations ofthe power output and practical models for building integrated photovoltaicsystems. Journal of Solar Energy Engineering, 2004, 126(3): 929―935

doi: 10.1115/1.1701883
Merten J, Andreu J. Clear separation of seasonaleffects on the performance of amorphous silicon solar modules by outdoorI/V-measurements. Solar Energy Materialsand Solar Cells, 1998, 52(1,2): 11―25
Zhou W, Yang H, Fang Z. A novel model for photovoltaic array performance prediction. Applied Energy, 2007, 84(12): 1187―1198

doi: 10.1016/j.apenergy.2007.04.006
Bouzidi K, Chegaar M, Bouhemadou A. Solar cells parameters evaluation considering the seriesand shunt resistance. Solar Energy Materialsand Solar Cells, 2007, 91(18): 1647―1651

doi: 10.1016/j.solmat.2007.05.019
El-Adawi M K, Al-Nuaim I A. A method to determine thesolar cell series resistance from a single I-V.Characteristic curve considering its shunt resistance-new approach. Vacuum, 2001, 64(1): 33―36

doi: 10.1016/S0042-207X(01)00370-0
De Blas M A, Torres J L, Prieto E,et al. Selecting a suitable model for characterizingphotovoltaic devices. Renewable Energy, 2002, 25(3): 371―380

doi: 10.1016/S0960-1481(01)00056-8
Araki K, Yamaguchi M. Novel equivalent circuitmodel and statistical analysis in parameters identification. Solar Energy Materials and Solar Cells, 2003, 75(3,4): 457―466
Bashahu M, Habyarimana A. Review and test of methodsfor determination of the solar cell series resistance. Renewable Energy, 1995, 6(2): 129―138

doi: 10.1016/0960-1481(94)E0021-V
Chegaar M, Ouennoughi Z, Guechi F. Extracting dc parameters of solar cells under illumination. Vacuum, 2004, 75(4): 367―372

doi: 10.1016/j.vacuum.2004.05.001
Tazibt W, Mialhe P, Charles J P,et al. A junction characterization for microelectronicdevices quality and reliability. MicroelectronicsReliability, 2008, 48(3): 348―353

doi: 10.1016/j.microrel.2007.06.002
Jastrzebski C, Strzalkowski I. Reversible and irreversibleinterface trap centres generated at high electric fields in MOS structures. Microelectronics Reliability, 2000, 40(4,5): 755―758
Zhao Y, Xu M, Tan C. Effect of reverse substrate bias on ultra-thin gate oxiden-MOSFET degradation under different stress modes. Microelectronics and Reliability, 2006, 46(1): 164―168

doi: 10.1016/j.microrel.2005.05.002
Hjalmarson H P, Pease R L, Hembree C E,et al. Dose-rate dependence of radiation-induced interfacetrap density in silicon bipolar transistors. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms, 2006, 250(1,2): 269―273
Gomaa N G. Photon-induced degradation in metal-insulator-semiconductor solarcells. Renewable Energy, 2001, 24(3,4): 529―534
Trapes C, Goguenheim D, Bravaix A. Experimental extraction of degradation parameters afterconstant voltage stress and substrate hot electron injection on ultrathinoxides. Microelectronics and Reliability, 2005, 45(5,6): 883―886
Aydin M E, Gullu O, Yildirim N. Temperature dependence of current-voltage characteristicsof Sn/p-Si Schottky contacts. Physica B:Condensed Matter, 2008, 403(1): 131―138

doi: 10.1016/j.physb.2007.08.089
Kawamura H, Naka K, Yonekura N,et al. Simulation of I-V characteristics of a PV modulewith shaded PV cells. Solar Energy Materialsand Solar Cells, 2003, 75(3,4): 613―621
Woyte A, Nijs J, Belmans R. Partial shadowing of photovoltaic arrays with differentsystem configurations: literature review and field test results. Solar Energy, 2003, 74(3): 217―233

doi: 10.1016/S0038-092X(03)00155-5
Karatepe E, Boztepe M, Colak M. Development of a suitable model for characterizing photovoltaicarrays with shaded solar cells. Solar Energy, 2007, 81(8): 977―992

doi: 10.1016/j.solener.2006.12.001
Grabitz P O, Rau U, Werner J H. A multi-diode model for spatially inhomogeneous solarcells. Thin Solid Films, 2005, 487(1,2): 14―18
Gow J A, Manning C D. Development of a photovoltaicarray model for use in power-electronics simulation studies. IEE Proceedings on Electric Power Applications, 1999, 146(2): 193―200

doi: 10.1049/ip-epa:19990116
Solodovnik E V, Shengyi L, Dougal R A. Power controller design for maximum power tracking insolar installations. IEEE Transactionson Power Electronics, 2004, 19(5): 1295―1304

doi: 10.1109/TPEL.2004.833457
Tafticht T, Agbossou K, Doumbia M L,et al. An improved maximum power point tracking methodfor photovoltaic systems. Renewable Energy, 2008, 33(7): 1508―1516

doi: 10.1016/j.renene.2007.08.015
Merten J, Asensi J M, Voz C,et al. Improved equivalent circuit and analytical modelfor amorphous silicon solar cells and modules. Electron Devices, IEEE Transactions on, 1998, 45(2): 423―429
Karpov V G. Critical disorder and phase transitions in random diode arrays. Physical Review Letters, 2003, 91(22): 226806

doi: 10.1103/PhysRevLett.91.226806
Karpov V G, Compaana D, Shvydka D. Effects of nonuniformity in thin-film photovoltaics. Applied Physics Letters, 2002, 80(22): 4256―4258

doi: 10.1063/1.1483118
Rau U, Grabitz P O, Werner J H. Resistive limitations to spatially inhomogeneous electroniclosses in solar cells. Applied PhysicsLetters, 2004, 85(24): 6010―6012

doi: 10.1063/1.1835536
Karpov V G, Compaana D, Shvydka D. Random diode arrays and mesoscale physics of large-areasemiconductor devices. Physical ReviewB, 2004, 69(4): 045325

doi: 10.1103/PhysRevB.69.045325
Rau U, Schmidt M. Electronic properties ofZnO/CdS/Cu(In,Ga)Se2 solar cells- aspects of heterojunction formation. Thin Solid Films, 2001, 387(1,2): 141-146
Shrotriya V, Li G, Yao Y, et al. Accurate measurement and characterization of organicsolar cells. Advanced Functional Materials,2006, 16(15): 2016―2023

doi: 10.1002/adfm.200600489
Schilinsky P, Waldauf C, Hauch J, et al. Simulation of light intensity dependent currentcharacteristics of polymer solar cells. Journal of Applied Physics, 2004, 95(5): 2816―2819

doi: 10.1063/1.1646435
Han L, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitizedsolar cells. Applied Physics Letters, 2004, 84(13): 2433―2435

doi: 10.1063/1.1690495
Karatepe E, Boztepe M, Colak M. Neural network based solar cell model. Energy Conversion and Management, 2006, 47(9,10): 1159―1178
Reddy K S, Ranjan M. Solar resource estimationusing artificial neural networks and comparison with other correlationmodels. Energy Conversion and Management, 2003, 44(15): 2519―2530

doi: 10.1016/S0196-8904(03)00009-8
Mubiru J. Predictingtotal solar irradiation values using artificial neural networks. Renewable Energy, 2008, 33(10): 2329―2332

doi: 10.1016/j.renene.2008.01.009
Veerachary M, Senjyu T, Uezato K. Neural-network-based maximum-power-point tracking ofcoupled-inductor interleaved-boost-converter-supplied PV system usingfuzzy controller. IEEE Transactions onIndustrial Electronics, 2003, 50(4): 749―758

doi: 10.1109/TIE.2003.814762
Al-Amoudi A, Zhang L. Application of radial basisfunction networks for solar-array modelling and maximum power-pointprediction. Generation, Transmission andDistribution, IEE Proceedings-, 2000, 147(5): 310―316
Park M, Kim B T, Yu I K. A novel simulation method for PV power generation systemsusingreal weather conditions. In: IndustrialElectronics, 2001 Proceedings ISIE 2001 IEEE International Symposiumon. Pusan, Korea: IEEE, 2001, 526―530
Chung H S H, Tse K K, Hui S Y R, et al. A novel maximum power point tracking techniquefor solar panels using a SEPIC or Cuk converter. IEEE Transactions on Power Electronics, 2003, 18(3): 717―724

doi: 10.1109/TPEL.2003.810841
Grzesiak W. MPPTsolar charge controller for high voltage thin film PV modules. In:Photovoltaic Energy Conversion, ConferenceRecord of the 2006 IEEE 4th World Conference on. Piscataway: IEEE, 2006, 2264―2267
Alghuwainem S M. Matching of a DC motor to a photovoltaic generator using a step-upconverter with a current-locked loop. IEEETransactions on Energy Conversion, 1994, 9(1): 192―198

doi: 10.1109/60.282492
Gow J A, Manning C D. Controller arrangement forboost converter systems sourced from solar photovoltaic arrays orother maximum power sources. IEE Proceedingson Electric Power Applications, 2000, 147(1): 15―20

doi: 10.1049/ip-epa:20000018
Koutroulis E, Kalaitzakis K, Voulgaris N C. Developmentof a microcontroller-based, photovoltaic maximum power point trackingcontrol system. IEEE Transactions on PowerElectronics, 2001, 16(1): 46―54

doi: 10.1109/63.903988
Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum powerpoint tracking method. IEEE Transactionson Power Electronics, 2005, 20(4): 963―973

doi: 10.1109/TPEL.2005.850975
Chihchiang H, Jongrong L, Chihming S. Implementation of a DSP-controlled photovoltaic systemwith peak power tracking. IEEE Transactionson Industrial Electronics, 1998, 45(1): 99―107

doi: 10.1109/41.661310
Hohm D P, Ropp M E. Comparative study of maximumpower point tracking algorithms. Progress in Photovoltaics: Research and Applications, 2003, 11(1): 47―62

doi: 10.1002/pip.459
Masoum M S, Dehbonei H, Fuchs E F. Theoretical and experimental analyses of photovoltaicsystems with voltageand current-based maximum power-point tracking. IEEE Transactions on Energy Conversion, 2002, 17(4): 514―522

doi: 10.1109/TEC.2002.805205
Appelbaum J. Discussionof "Theoretical and experimental analyses of photovoltaic systemswith voltage and current-based maximum power point tracking". IEEE Transactions on Energy Conversion, 2004, 19(3): 651―652

doi: 10.1109/TEC.2004.832446
Masoum M S, Dehbonei H, Fuchs E F. Closure on "Theoreticaland experimental analyses of photovoltaic systems with voltage andcurrent-based maximum power point tracking". IEEE Transactions on Energy Conversion, 2004, 19(3): 652―653

doi: 10.1109/TEC.2004.832449
Noguchi T, Togashi S, Nakamoto R. Short-current pulse-based maximum-power- point trackingmethod for multiple photovoltaic-and-converter module system. IEEE Transactions on Industrial Electronics, 2002, 49(1): 217―223

doi: 10.1109/41.982265
Lee D Y, Noh H J, Hyun D S, et al. An improved MPPT converter using current compensationmethod for small scaled PV-applications. In: Applied Power Electronics Conference and Exposition, 2003 APEC'03 Eighteenth Annual IEEE. New York: IEEE, 2003, 540―545
Enslin J H R, Wolf M S, Snyman D B, et al. Integrated photovoltaic maximum power point trackingconverter. IEEE Transactions on IndustrialElectronics, 1997, 44(6): 769―773

doi: 10.1109/41.649937
Masoum M S, Badejani S M M and Fuchs E F. Microprocessor-controlled new class of optimal batterychargers for photovoltaic applications. IEEE Transactions on Energy Conversion, 2004, 19(3): 599―606

doi: 10.1109/TEC.2004.827716
Veerachary M, Senjyu T, Uezato K. Voltage-based maximum power point tracking control ofPV system. IEEE Transactions on Aerospaceand Electronic Systems, 2002, 38(1): 262―270

doi: 10.1109/7.993245
Hussein K H, Muta I, Hoshino T,et al. Maximum photovoltaic power tracking: an algorithmfor rapidly changing atmospheric conditions. Generation, Transmission and Distribution, IEE Proceedings-, 1995, 142(1): 59―64
Tse K K, Ho B M T, Chung H S H, et al. A comparative study of maximum-power-point trackersfor photovoltaic panels using switching-frequency modulation scheme. IEEE Transactions on Industrial Electronics, 2004, 51(2): 410―418

doi: 10.1109/TIE.2004.825226
Kuo Y C, Liang T J, Chen J F. Novel maximum-power-point-tracking controller for photovoltaicenergy conversion system. IEEE Transactionson Industrial Electronics, 2001, 48(3): 594―601

doi: 10.1109/41.925586
Khaehintung N, Pramotung K, Tuvirat B, et al. RISC-microcontroller built-in fuzzy logic controllerof maximum power point tracking for solar-powered light-flasher applications. In: Industrial Electronics Society, 2004 IECON 2004 30th Annual Conference of IEEE. Piscataway: IEEE, 2004, 2673―2678
Viswanathan K, Oruganti R, Srinivasan D. Nonlinear function controller:asimple alternative to fuzzy logic controller for a power electronicconverter. IEEE Transactions on IndustrialElectronics, 2005, 52(5): 1439―1448

doi: 10.1109/TIE.2005.855652
Wu T F, Chang C H, Chen Y H. A fuzzy-logic-controlled single-stage converter for PV-poweredlighting system applications. IEEE Transactionson Industrial Electronics, 2000, 47(2): 287―296

doi: 10.1109/41.836344
Khaehintung N, Sirisuk P. Implementation of maximumpower point tracking using fuzzy logic controller for solar-poweredlight-flasher applications. In: The 200447th Midwest Symposium on Circuits and Systems. New York: IEEE, 2004, 171―174
Tarascon J M, Armand M. Issues and challenges facingrechargeable lithium batteries. Nature, 2001, 414(6861): 359―367

doi: 10.1038/35104644
Barbarisi O, Canaletti R, Glielmo L,et al. State of charge estimator for NiMH batteries. In: Proc 41st IEEE Conf Decision and Control. Piscataway: IEEE, 2002, 1739―1744
Danese G, Leporati F, Lombardi R,et al. An instrument for the characterization of voltageand temperature profile in NiCd and NiMH batteries. In: EUROMICRO 97 'New Frontiers of Information Technology' Short Contributions,Proceedings of the 23rd Euromicro Conference. Piscataway: IEEE, 1997, 178―183
Boico F, Lehman B, Shujaee K. Solar battery chargers for NiMH batteries. IEEE Transactions on Power Electronics, 2007, 22(5): 1600―1609

doi: 10.1109/TPEL.2007.904164
Nobuyoshi M, Takayoshi I. A control method to chargeseries-connected ultraelectric Double-Layer capacitors suitable forphotovoltaic generation systems combining MPPT control method. Industrial Electronics, IEEE Transactions on, 2007, 54(1): 374―383
Isaacson M J, Hollandsworth RP, Giampaoli P J,et al. Advanced lithiumion battery charger. In: Battery Conferenceon Applications and Advances, 2000The Fifteenth Annual. Long Beach. CA, USA: IEEE, 2000, 193―198
Min C, Rincon-Mora G A. Accurate, compact, and power-efficientLi-Ion battery chargercircuit. Circuitsand Systems II: Express Briefs, IEEE Transactions on, 2006, 53(11): 1180―1184
Potanin V, Potanin V Y. Li-Ion battery charger withthree-parameter regulation loop. In: PowerElectronics Specialists, 2005 IEEE 36th Conference on. Piscataway:IEEE, 2005, 2836―2840
Dearborn S. ChargingLi-ion batteries for maximum run times. Power Electronics Technology Magazine, 2005, (4): 40―49
Jia D. Developmentof human kinematic energy based generator. Dissertation for the Bachelor's Degree. Shanghai: Tongji University, 2008, 92
Schubert M B, Werner J H. Flexible solar cells forclothing. Materials Today, 2006, 9(6): 42―50

doi: 10.1016/S1369-7021(06)71542-5
Leichtenstern K, Rukzio E, Chin J,et al. Mobile interaction in smart environments. Advances in Pervasive Computing, 2006, 207(1): 43―48
Syed A, Kindra T S. Carrying case with solarcharger mounted on top for portable devices. Canada patent, CA 2486877. 2006
Sun C-H, Jiang P, Jiang B. Broadband moth-eye antireflection coatings on silicon. Applied Physics Letters, 2008, 92(6): 061112―061113

doi: 10.1063/1.2870080
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed