Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2013, Vol. 7 Issue (1): 111-118   https://doi.org/10.1007/s11708-012-0228-4
  RESEARCH ARTICLE 本期目录
Hydrogen production from water splitting on CdS-based photocatalysts using solar light
Hydrogen production from water splitting on CdS-based photocatalysts using solar light
Xiaoping CHEN, Wenfeng SHANGGUAN()
Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(367 KB)   HTML
Abstract

Hydrogen energy has been regarded as the most promising energy resource in the near future due to that it is a clean and sustainable energy. And the heterogeneous photocatalytic hydrogen production is increasingly becoming a research hotspot around the world today. As visible light response photocatalysts for hydrogen production, cadmium sulfide (CdS) is the most representative material, the research of which is of continuing popularity. In the past several years, there has been significant progress in water splitting on CdS-based photocatalysts using solar light, especially in the development of co-catalysts. In this paper, recent researches into photocatalytic water splitting on CdS-based photocatalysts are reviewed, including controllable synthesis of CdS, modifications with different kinds of cocatalysts, solid solution, intercalated with layered nanocomposites and metal oxides, and hybrids with graphenes etc. Finally, the problems and future challenges in photocatalytic water splitting on CdS-based photocatalysts are described.

Key wordshydrogen    photocatalysis    solar conversion    cadmium sulfide (CdS) complex
收稿日期: 2012-10-29      出版日期: 2013-03-05
Corresponding Author(s): SHANGGUAN Wenfeng,Email:shangguan@sjtu.edu.cn   
 引用本文:   
. Hydrogen production from water splitting on CdS-based photocatalysts using solar light[J]. Frontiers in Energy, 2013, 7(1): 111-118.
Xiaoping CHEN, Wenfeng SHANGGUAN. Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Front Energ, 2013, 7(1): 111-118.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-012-0228-4
https://academic.hep.com.cn/fie/CN/Y2013/V7/I1/111
Fig.1  
Fig.2  
Fig.3  
Fig.4  
SampleEvolved H2/(μmol·h-1)Reaction conditions
CdS150.1 g catalyst10% (vol) lactic solution (200 mL); light source , xenonLamp (300 W) with a cutoff filter
1 wt% Pt/CdS355
1 wt% Ru/CdS293
1 wt% Rh/CdS207
1 wt% Au /CdS45.5
0.1 wt% WS2/CdS420
0.2 wt% MoS CdS533
Tab.1  
Fig.5  
SampleBandgap/eVCdS content/wt%Specific surface area/(m2·g-1)Evolved H2/(mmol·m-2·h-1 )a
CdSb2.420.53.24
CdS/KTiNbO52.66.510.33.68
CdS/K2Ti4O92.610.212.43.80
CdS/K2Ti3.9Nb0.1 O92.519.519.34.70
CdS/ K2Ti3.9Nb0.1 O9c3.20
Tab.2  
Fig.6  
Fig.7  
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature , 1972, 238(5358): 37–38
doi: 10.1038/238037a0 pmid:12635268
2 Shangguan W F. Progress in hydrogen production from water splitting using solar light. Chinese Journal of Inorganic Chemistry , 2001, 17(5): 619–624
3 Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano , 2007, 1(4): 273–278
doi: 10.1021/nn700136n pmid:19206677
4 Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces , 2009, 1(5): 1140–1143
doi: 10.1021/am9001474 pmid:20355902
5 Weng C C, Hsu K F, Wei K H. Synthesis of arrayed TiO2 needlelike nanostructures via a polystyrene-block-poly (4-vinylpyridine) diblock copolymer template. Chemistry of Materials , 2004, 16(21): 4080–4086
doi: 10.1021/cm049367j
6 Wang H Q, Wu Z B, Liu Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2. Journal of Physical Chemistry C , 2009, 113(30): 13317–13324
doi: 10.1021/jp9047693
7 Wang D A, Liu Y, Wang C W, Zhou F, Liu W M. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. ACS Nano , 2009, 3(5): 1249–1257
doi: 10.1021/nn900154z pmid:19413294
8 Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. Journal of Physical Chemistry B , 2003, 107(23): 5483–5486
doi: 10.1021/jp030133h
9 Khan S U, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science , 2002, 297(5590): 2243–2245
doi: 10.1126/science.1075035 pmid:12351783
10 Yan H J, Yang J H, Ma G J, Wua G P, Zong X, Lei Z B, Shi J Y, Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalys. Journal of Catalysis , 2009, 266(2): 165–168
doi: 10.1016/j.jcat.2009.06.024
11 Maeda K, Saito N, Lu D, Inoue Y, Domen K. Photocatalytic properties of RuO2-loaded β-Ge3N4 for overall water splitting. Journal of Physical Chemistry C , 2007, 111(12): 4749–4755
doi: 10.1021/jp067254c
12 Hara M, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today , 2003, 78(1–4): 555–560
doi: 10.1016/S0920-5861(02)00354-1
13 Ohmori T, Mametsuka H, Suzuki E. Photocatalytic hydrogen evolution on InP suspension with inorganic sacricial reducing agent. International Journal of Hydrogen Energy , 2000, 25(10): 953–955
doi: 10.1016/S0360-3199(00)00014-8
14 Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society , 2003, 125(10): 3082–3089
doi: 10.1021/ja027751g pmid:12617675
15 Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A. The relationship between photocatalytic activity and crystal structure in strontium tantalates. Journal of Catalysis , 2005, 232(1): 102–107
doi: 10.1016/j.jcat.2005.02.021
16 Domen K, Kudo A, Tanaka A, Onishi T. Overall photodecomposition of water on a layered niobiate catalyst. Catalysis Today , 1990, 8(1): 77–84
doi: 10.1016/0920-5861(90)87009-R
17 Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chemical Physics Letters , 2003, 373(1–2): 191–196
doi: 10.1016/S0009-2614(03)00574-8
18 Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7 (R= Y, Rare Earth): Effect on band structure and photocatalytic properties. Journal of Physical Chemistry , 2002, 106(3): 517–520
doi: 10.1021/jp012982f
19 Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water. Nature , 2006, 440(7082): 295
doi: 10.1038/440295a pmid:16541063
20 Wang X C, Maeda K, Lee Y, Domen K. Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters , 2008, 457(1–3): 134–136
doi: 10.1016/j.cplett.2008.03.065
21 Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. Journal of the American Chemical Society , 2004, 126(41): 13406–13413
doi: 10.1021/ja048296m pmid:15479097
22 Liu H, Yuan J, Shangguan W F, Teraoka Y. Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting. Journal of Physical Chemistry C , 2008, 112(23): 8521–8523
doi: 10.1021/jp802537u
23 Shangguan W F. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and Technology of Advanced Materials , 2007, 8(1,2): 76–81
24 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews , 2009, 38(1): 253–278
doi: 10.1039/b800489g pmid:19088977
25 Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters , 2005, 5(5): 917–920
doi: 10.1021/nl050440u pmid:15884894
26 Sathish M, Viswanathan B, Viswanath R P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for watersplitting. International Journal of Hydrogen Energy , 2006, 31(7): 891–898
doi: 10.1016/j.ijhydene.2005.08.002
27 Grzelczak M, Correa-Duarte M A, Salgueirino-Maceira V, Giersig M, Diaz R, Liz-Marzán L M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer. Advanced Materials (Deerfield Beach, Fla.) , 2006, 18(4): 415–420
doi: 10.1002/adma.200501523
28 Liu J K, Luo C X, Yang X H, Zhang X Y. Ultrasonic-template method synthesis of CdS hollow nanoparticle chains. Materials Letters , 2009, 63(1): 124–126
doi: 10.1016/j.matlet.2008.09.029
29 Wang X L, Feng Z C, Fan D Y, Fan F T, Li C. Shape-controlled synthesis of CdS nanostructures via a solvothermal method. Crystal & Growth Design , 2010, 12(12): 5312–5318
30 Yang X H, Wu Q S, Li L, Ding Y P, Zhang G X. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloid and Surfaces A. Physicochemical and Engineering Aspects , 2005, 264(1–3): 172–178
doi: 10.1016/j.colsurfa.2005.05.059
31 Li C L, Yuan J, Han B Y, Shangguan W F. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy , 2011, 36(7): 4271–4279
doi: 10.1016/j.ijhydene.2011.01.022
32 Bao N Z, Shen L M, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials , 2008, 20(1): 110–117
doi: 10.1021/cm7029344
33 Yu J G, Zhang J, Jaronic M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution. Green Chemistry , 2010, 12(9): 1611–1614
doi: 10.1039/c0gc00236d
34 Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. Journal of Physical Chemistry C , 2007, 111(47): 17527–17534
doi: 10.1021/jp076566s
35 Borgarello E, Kalyanasundaram K, Gratzel M. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2. Helvetica Chimica Acta , 1982, 65(1): 243–248
doi: 10.1002/hlca.19820650123
36 Yang T T, Chen W T, Hsu Y J, Wei K H, Lin T Y, Lin T W. Interfacial charge carrier dynamics in core shell Au-CdS nanocrystals. Journal of Physical Chemistry C , 2010, 114(26): 11414–11420
doi: 10.1021/jp103294c
37 Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis , 2012, 290: 151–157
doi: 10.1016/j.jcat.2012.03.008
39 Luo M, Liu Y, Hu J C, Liu H, Li J L. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Applied Materials & Interfaces , 2012, 4(3): 1813–1821
doi: 10.1021/am3000903 pmid:22387732
40 Tabata M, Maeda K, Ishihara T, Minegishi T, Takata T, Domen K. Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. Journal of Physical Chemistry C , 2010, 114(25): 11215–11220
doi: 10.1021/jp103158f
41 Zong X, Han J F, Ma G J, Yan H J, Wu G P, Li C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. Journal of Physical Chemistry C , 2011, 115(24): 12202–12208
doi: 10.1021/jp2006777
42 Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. Journal of Physical Chemistry C , 2010, 114(4): 1963–1968
doi: 10.1021/jp904350e
43 Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and IO3-/I- shuttle redox mediator under visible light irradiation. Chemical Communications (Cambridge) , 2001, (23): 2416–2417
doi: 10.1039/b107673f
44 Kato H, Hori M, Konta R, Shimodaira Y, Kudo A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters , 2004, 33(10): 1348–1349
doi: 10.1246/cl.2004.1348
45 Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials , 2006, 5(10): 782–786
doi: 10.1038/nmat1734 pmid:16964238
46 Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. Journal of Physical Chemistry B , 2002, 106(47): 12227–12230
doi: 10.1021/jp0212500
47 Sato T, Masaki K, Sato K, Fujishiro Y, Okuwaki A. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 1996, 67(4): 339–344
doi: 10.1002/(SICI)1097-4660(199612)67:4<339::AID-JCTB585>3.0.CO;2-1
48 Sato T, Sato K, Fujishiro Y, Yoshioka T, Okuwaki A. Photochemical reduction of nitrate to ammonia using layered hydrous Titanate/Cadmium sulphide nanocomposites. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 1996, 67(4): 345–349
doi: 10.1002/(SICI)1097-4660(199612)67:4<345::AID-JCTB586>3.0.CO;2-#
49 Shangguan W F, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Solar Energy Materials and Solar Cells , 2001, 69(2): 189–194
doi: 10.1016/S0927-0248(01)00020-4
50 Gao X F, Sun W T, Hu Z D, Ai G, Zhang Y L, Feng S, Li F, Peng L M. Hu Z-D, Ai G, Zhang Y-L, Feng S, Li F, Peng L-M. An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. Journal of Physical Chemistry C , 2009, 113(47): 20481–20485
doi: 10.1021/jp904320d
51 Barpuzary D, Khan Z, Vinothkumar N, De M, Qureshi M. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation. Journal of Physical Chemistry C , 2012, 116(1): 150–156
doi: 10.1021/jp207452c
52 Wang L, Wei H W, Fan Y J, Gu X, Zhan J H. One-dimensional CdS/r-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. Journal of Physical Chemistry C , 2009, 113(32): 14119–14125
doi: 10.1021/jp902866b
53 Li C L, Yuan J, Han B Y, Jiang L, Shangguan W F. TiO2 Nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. International Journal of Hydrogen Energy , 2010, 35(13): 7073–7079
doi: 10.1016/j.ijhydene.2010.01.008
54 Xing C J, Zhang Y J, Yan W, Guo L J. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy , 2006, 31(14): 2018–2024
doi: 10.1016/j.ijhydene.2006.02.003
55 Kimi M, Yuliati L, Shamsuddin M. Photocatalytic hydrogen production under visible light over Cd0.1SnxZn09-2xS solid solution photocatalysts. International Journal of Hydrogen Energy , 2011, 36(16): 9453–9461
doi: 10.1016/j.ijhydene.2011.05.044
56 Ikeue K, Shiiba S, Machida M. Novel Visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chemistry of Materials , 2010, 22(3): 743–745
doi: 10.1021/cm9026013
57 Xie S L, Lu X H, Zhai T, Gan J Y, Li W, Xu M, Yu M H, Zhang Y M, Tong Y X. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity. Langmuir , 2012, 28(28): 10558–10564
doi: 10.1021/la3013624 pmid:22697427
58 Zhang J, Yu J G, Jaroniec M, Gong J R. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Letters , 2012, 12(9): 4584–4589
doi: 10.1021/nl301831h pmid:22894686
59 Gao P, Liu J C, Lee S, Zhang T, Sun D D. High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry , 2012, 22(5): 2292–2298
doi: 10.1039/c2jm15624e
60 Lee H, Heo K, Maaroof A, Park Y, Noh S, Park J, Jian J, Lee C, Seong M J, Hong S. High-performance photoconductive channels based on (carbon nanotube)-(CdS nanowire) hybrid nanostructures. Small , 2012, 8(11): 1650–1656
doi: 10.1002/smll.201102628 pmid:22434722
61 Jia L, Wang D H, Huang Y X, Xu A W, Yu H Q. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. Journal of Physical Chemistry C , 2011, 115(23): 11466–11473
doi: 10.1021/jp2023617
62 Gao Z Y, Liu N, Wu D P, Tao W Q, Xu F, Jiang K. Graphene-CdS composite, synthesis and enhanced photocatalytic activity. Applied Surface Science , 2012, 258(7): 2473–2478
doi: 10.1016/j.apsusc.2011.10.075
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed