Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2013, Vol. 7 Issue (2): 155-160   https://doi.org/10.1007/s11708-013-0244-z
  RESEARCH ARTICLE 本期目录
Indoor thermal comfort research on the hybrid system of radiant cooling and dedicated outdoor air system
Indoor thermal comfort research on the hybrid system of radiant cooling and dedicated outdoor air system
Weiliang WANG(), Zhe TIAN
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(225 KB)   HTML
Abstract

The radiant cooling system generally operates with the dedicated outdoor air system (DOAS). Air supply modes and the corresponding setting parameters of the hybrid system may substantially influence the indoor thermal comfort. With target indexes of air diffusion performance index (ADPI) and predicted mean vote (PMV), the Taguchi method was used to choose the optimal air supply mode and to analyze the significance of different factors on the thermal comfort. The results are expected for conducting the future design and regulation of the hybrid system. Computation fluid dynamics (CFD) simulation as well as verified experiments was performed during the research. Based on the ADPI studies, it is found that the air supply mode of ceiling delivery with ceiling exhaust is an optimized option to apply in DOAS of the hybrid system. Variance analysis results show that influence fact of air supply temperature is the most dominant one to impact the indoor thermal comfort index of PMV.

Key wordsradiant cooling system    dedicated outdoor air system (DOAS)    thermal comfort    Taguchi method    variance analysis
收稿日期: 2012-10-15      出版日期: 2013-06-05
Corresponding Author(s): WANG Weiliang,Email:wangweiliang126@126.com   
 引用本文:   
. Indoor thermal comfort research on the hybrid system of radiant cooling and dedicated outdoor air system[J]. Frontiers in Energy, 2013, 7(2): 155-160.
Weiliang WANG, Zhe TIAN. Indoor thermal comfort research on the hybrid system of radiant cooling and dedicated outdoor air system. Front Energ, 2013, 7(2): 155-160.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-013-0244-z
https://academic.hep.com.cn/fie/CN/Y2013/V7/I2/155
Fig.1  
Fig.2  
LevelsFactorsAverage ADPIs of different air supply modes/%
Air supply modeAir supply temperature/°CAir supply volume/(m3·h-1)
1Down-up1650030.8
2Side-down1840033.0
3Up-up2030038.3
4Up-down2220032.0
Tab.1  
Fig.3  
Fig.4  
Air supply modesNon-uniformity coefficient of temperatureNon-uniformity coefficient of velocity
Down-up0.0090.326
Side-down0.0100.444
Up-up0.0050.312
Up-down0.0060.384
Tab.2  
No.Radiant panel temperature/°CRadiant panel coverage rate/%Air supply temperature/°CAir supply volume/(m3·h-1)PMV
11632 (6 panels)16500-0.426
21642.70 (8 panels)18400-0.388
31653.30 (10 panels)20300-0.242
41664 (12 panels)22200-0.169
51832 (6 panels)18300-0.291
61842.70 (8 panels)16200-0.301
71853.30 (10 panels)22500-0.079
81864 (12 panels)20400-0.329
92032 (6 panels)20200-0.008
102042.70 (8 panels)223000.035
112053.30 (10 panels)16400-0.456
122064 (12 panels)18500-0.384
132232 (6 panels)224000.041
142242.70 (8 panels)20500-0.076
152253.30 (10 panels)18200-0.103
162264 (12 panels)16300-0.435
Tab.3  
Source of variationSum of squaresDegree of freedomMean squaresF ratioCritical valuesNotability
0.10.050.01
Radiant panel temperature0.057530.0191715.695.399.2829.46**
Radiant panel coverage rate0.062530.0208217.045.399.2829.46**
Air supply temperature0.294130.0980280.235.399.2829.46***
Air supply volume0.040330.0134110.975.399.2829.46**
Error0.003730.00122
Sum0.395515F0.1(3,3) = 5.39, F0.05(3,3) = 9.28, F0.01(3,3) = 29.46
Tab.4  
1 Feustel H E, Stetiu C. Hydronic radiant cooling-preliminary assessment. Energy and Building , 1995, 22(3): 193–205
doi: 10.1016/0378-7788(95)00922-K
2 Tian Z, Ding Y, Wang S, Yin X L, Wang M L. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode. Energy and Building , 2010, 42(12): 2360–2364
doi: 10.1016/j.enbuild.2010.07.031
3 Hodder S G, Loveday D L, Parsons K C, Taki A H. Thermal comfort in chilled ceiling and displacement ventilation environments: Vertical radiant temperature asymmetry effects. Energy and Building , 1998, 27(2): 167–173
doi: 10.1016/S0378-7788(97)00038-8
4 Kitagawa K, Komoda N, Hayano H, Tanabe S. Effect of humidity and small air movement on thermal comfort under a radiant cooling ceiling by subjective experiments. Energy and Building , 1999, 30(2): 185–193
doi: 10.1016/S0378-7788(98)00086-3
5 Catalina T, Virgone J, Kuznik F. Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling. Building and Environment , 2009, 44(8): 1740–1750
doi: 10.1016/j.buildenv.2008.11.015
6 Chiang W H, Wang C Y, Huang J S. Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region. Building and Environment , 2011, 48(1): 113–127
7 Corgnati S P, Perino M, Fracastoro G V, Nielsen P V. Experimental and numerical analysis of air and radiant cooling systems in offices. Building and Environment , 2009, 44(4): 801–806
doi: 10.1016/j.buildenv.2008.05.022
8 Zang X G, Zhao S X, Li W J. On comparison and analysis of thermal comfort with application of ADPI and PMV evaluations. Shanxi Architecture , 2010, 36(33): 174–175
9 Ng K C, Kadirgama K, Ng E Y K. Response surface models for CFD predictions of air diffusion performance index in a displacement ventilated office. Energy and Building , 2008, 40(5): 774–781
doi: 10.1016/j.enbuild.2007.04.024
10 Abu-El-Hassan M B, Hosni M H, Miller P L. Evaluation of turbulence effect on air distribution performance index (ADPI). ASHRAE Transactions , 1996, 102: 322–331
11 Loveday D L, Parsons K C, Taki A H, Hodder S G. Displacement ventilation environments with chilled ceiling: Thermal comfort design within the context of the BS EN ISO7730 versus adaptive debate. Energy and Building , 2002, 34(6): 573–579
doi: 10.1016/S0378-7788(02)00007-5
12 Chen Q Y, Xu W R. A zero-equation turbulence model for indoor airflow simulation. Energy and buildings , 1998, 28(2): 137–1 44
13 Zhao B, Li X T, Yan Q S. Simulation of indoor air flow in ventilated room by zero-equation turbulence model. Journal of Tsinghua University (Science & Technology) , 2001, 41(10): 109–113
14 Zhao B, Li X T, Yan Q S. Simplified method for numerical simulation of indoor airflow. HV&AC , 2003, 33(3): 102–104
15 Turgut E, Cakmak G, Y?ld?z C. Optimization of the concentric heat exchanger with injector turbulators by Taguchi method. Energy Conversion and Management , 2012, 53(1): 268–275
doi: 10.1016/j.enconman.2011.09.011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed