Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  0, Vol. Issue (): 174-181   https://doi.org/10.1007/s11708-013-0246-x
  RESEARCH ARTICLE 本期目录
Constriction factor based particle swarm optimization for analyzing tuned reactive power dispatch
Constriction factor based particle swarm optimization for analyzing tuned reactive power dispatch
Syamasree BISWAS(RAHA,), Kamal Krishna MANDAL, Niladri CHAKRABORTY
Department of Power Engineering, Jadavpur University, Kolkata 700098, India
 全文: PDF(145 KB)   HTML
Abstract

The reactive power dispatch (RPD) problem is a very critical optimization problem of power system which minimizes the real power loss of the transmission system. While solving the said problem, generator bus voltages and transformer tap settings are kept within a stable operating limit. In connection with the RPD problem, solving reactive power is compensated by incorporating shunt capacitors. The particle swarm optimization (PSO) technique is a swarm intelligence based fast working optimization method which is chosen in this paper as an optimization tool. Additionally, the constriction factor is included with the conventional PSO technique to accelerate the convergence property of the applied optimization tool. In this paper, the RPD problem is solved in the case of the two higher bus systems, i.e., the IEEE 57-bus system and the IEEE 118-bus system. Furthermore, the result of the present paper is compared with a few optimization technique based results to substantiate the effectiveness of the proposed study.

Key wordsreal power loss minimization    voltage stability    constriction factor    particle swarm optimization (PSO)
收稿日期: 2012-10-06      出版日期: 2013-06-05
Corresponding Author(s): BISWAS(RAHA) Syamasree,Email:syamasree@gmail.com, syamasree@hotmail.com   
 引用本文:   
. Constriction factor based particle swarm optimization for analyzing tuned reactive power dispatch[J]. Frontiers in Energy, 0, (): 174-181.
Syamasree BISWAS(RAHA), Kamal Krishna MANDAL, Niladri CHAKRABORTY. Constriction factor based particle swarm optimization for analyzing tuned reactive power dispatch. Front Energ, 0, (): 174-181.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-013-0246-x
https://academic.hep.com.cn/fie/CN/Y0/V/I/174
Fig.1  
Sl No.UnitsIEEE 57-bus systemIEEE 118-bus system
1pu0.95≤VL≤1.100.95≤VL≤1.10
2pu0.95≤Vg≤1.100.95≤Vg≤1.10
3pu0.90≤T≤1.100.90≤T≤1.10
4pu0.05≤QC18≤0.200.06≤QC25≤0.300.06≤QC53≤0.300.0≤QC34≤14.00.0≤ QC44, QC45, QC46, QC83≤10.00.0≤QC48≤15.00.0≤QC74≤12.00.0≤QC79, QC82, QC105≤20.00.0≤QC107, QC110≤6.0
Tab.1  
Controlled variableCf-PSO
Vg21.0918
Vg31.0626
Vg61.0788
Vg81.0669
Vg91.0742
Vg121.0726
T4-181.0467
T4-181.0999
T21-201.0538
T24-261.0468
T7-291.0938
T34-321.0346
T11-411.0890
T15-451.0745
T14-461.0520
T10-511.0427
T13-491.0870
T11-431.0728
T40-561.0859
T39-571.0334
T9-551.0726
QC180.2000
QC250.06
QC530.06
Ploss/MW20.2454
Ploss reduction from the base case/%2.2546
CPU operating time/s321.080
Tab.2  
Fig.2  
Controlled variableCf-PSOControlled variableCf-PSO
Vg11.0759Vg901.0728
Vg41.0828Vg911.0809
Vg61.0805Vg921.0857
Vg81.0786Vg991.0802
Vg101.0862Vg1001.0755
Vg121.0766Vg1021.0798
Vg151.08Vg1031.0764
Vg181.0821Vg1041.0755
Vg191.0726Vg1051.0730
Vg241.0775Vg1071.0810
Vg251.0912Vg1101.0812
Vg261.0979Vg1111.0841
Vg271.0778Vg1121.0780
Vg311.0798Vg1131.0852
Vg321.0918Vg1161.08
Vg341.0765T6-101.0364
Vg361.0872T4-121.0839
Vg401.0598T28-271.0931
Vg421.0797T6-101.0867
Vg461.0776T4-121.0950
Vg491.0773T28-271.0899
Vg541.0739T6-101.0875
Vg551.0674T4-121.0911
Vg561.0873T28-271.0915
Vg591.0782QC344.5443
Vg611.0781QC445.8682
Vg621.0772QC4510.000
Vg651.0791QC467.0605
Vg661.0840QC489.3158
Vg701.0762QC748.7584
Vg721.0737QC792.0389
Vg731.0791QC8218.2163
Vg741.0873QC831.2276
Vg761.0931QC1056.1173
Vg771.0739QC1075.3139
Vg801.0806QC1105.1443
Vg851.0844Ploss/MW116.523
Vg871.0698Ploss reduction from the base case/%11.38935
Vg891.0830CPU operating time/s480.771
Tab.3  
Fig.3  
Applied algorithms to RPD problemMinimized value obtained for the IEEE 57-bus system/MWMinimized value obtained for the IEEE 118-bus system/MW
L-SACP-DE [19]27.91553141.79864
CGA [20]25.24411139.41498
SPSO-07 [21]24.43043139.27522
DE [2]25.0475128.318
AGA [20]24.56484124.20915
CLPSO [22]24.51520123.15216
L-SaDE [23]24.26739116.90569
Cf-PSO20.2454116.523
Tab.4  
1 Bansilal D T, Parthasarathy K. Optimal reactive power dispatch algorithm for voltage stability improvement. Electrical Power and Energy Systems , 1996, 18(70): 461–468
2 Varadarajan M, Swarup K S. Differential evolution approach for optimal reactive power dispatch. Applied Soft Computing , 2008, 8(4): 1549–1561
3 Mahadevan K, Kannan P S. Comprehensive learning particle swarm optimization for reactive power dispatch. Applied Soft Computing , 2010, 10(2): 641–652
4 Subbaraj P, Rajnarayanan P N. Optimal reactive power dispatch using self-adaptive real coded genetic algorithm. Electric Power Systems Research , 2009, 79(2): 374–381
5 Talbi E G. Metaheuristics from Design to Implementation . John Wiley & Sons , 2009
6 Wu Q H, Ma J T. Power system optimal reactive power dispatch using evolutionary programming. IEEE Transactions on Power Systems , 1995, 10(3): 1243–1249
7 Abido M A. Optimal power flow using tabu search algorithm. Electrical Power Components Systems , 2002, 30(5): 469–483
8 Osman M S, Abo-Sinna M A, Mousa A A. A solution to the optimal power flow using genetic algorithm. Applied Mathematics and Computation , 2004, 155(2): 391–405
9 Abou El Ela A A, Abido M A, Spea A R. Optimal power flow using differential evolutionary algorithm. Electric Power Systems Research , 2010, 80(7): 878–885
10 Liang C H, Chung C Y, Wong K P, Duan X Z, Tse C T. Study of differential evolution for optimal reactive power flow. IET Generation Transmission Distribution , 2007, 1(2): 253–260
11 Raha S, Som T, Chakraborty N. Exploration of simulated annealing technique in reactive power dispatch domain. In: proceedings of National conference on recent developments in electrical engineering 2011 (NCRDEE 2011) . Jalpaiguri, India: IE Publishing, 2011, 92-97
12 Yoshida H, Fukuyama Y, Kawata K, Takayama S, Nakanishi Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems , 2000, 15(4): 1232–1239
13 Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings ICEC . USA: Washington, DC, 1999, 1951 -1957
14 James K, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks . IEEE, 1995, 1942 -1948
15 Shi Y, Eberhart R C. Comparison between genetic algorithms and particle swarm optimization. In: Lecture Notes in Computer Science Volume 1447- Evolutionary Programming VII . In: Proceedings Seventh International Conference Evolutionary Programming . San Diego, USA: Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 1998, 611 -616
16 Shi Y H, Eberhart R C. A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation . Anchorage, USA, 1998, 69 -73
17 Electrical Engineering, University of Washington.Power system test case archive . 2006-12, http://www.ee.washington.edu/research/pstca
18 Saadat H. Power System Analysis. 3rd ed. McGraw-Hill Primis Custom Publishing , 2008
19 Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation , 2006, 10(6): 646–657
20 Wu Q H, Cao Y J, Wen J Y. Optimal reactive power dispatch using an adaptive genetic algorithm. International Journal of Electrical Power & Energy Systems , 1998, 20(8): 563–569
21 Programs Section of the Particle Swarm Central. Standard PSO 2007 (SPSO-07), 2010-09, http://www.particleswarm.info/Programs.html
22 Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation , 2006, 10(3): 67–82
23 Qin A K, Suganthan P N. Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE Congress on Evolutionary Computation . Edinburgh, UK, 2005, 1785-1791
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed