Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2013, Vol. 7 Issue (2): 146-154   https://doi.org/10.1007/s11708-013-0253-y
  RESEARCH ARTICLE 本期目录
Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes
Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes
Jianxiang WANG1, Hong YE1(), Xi WU2, Hujun WANG1, Xiaojie XU3
1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China; 2. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China; School of Physics Science and Technology, Soochow University, Suzhou 215006, China; 3. School of Physics Science and Technology, Soochow University, Suzhou 215006, China
 全文: PDF(569 KB)   HTML
Abstract

The experimental I-V characteristics of a Si cell module in a thermophotovoltaic (TPV) system were investigated using SiC or Yb2O3 radiator. The results demonstrate that the short-circuit current increases while the open-circuit voltage, along with the fill factor, decreases with the cell temperature when the radiator temperature increases from 1273 to 1573 K, leading to a suppressed increase of the output power of the system. The maximum output power density of the cell module is 0.05 W/cm2 when the temperature of the SiC radiator is 1573 K, while the electrical efficiency of the system is only 0.22%. The efficiency is 1.3% with a Yb2O3 radiator at the same temperature, however, the maximum output power density drops to 0.03 W/cm2. The values of the open-circuit voltage and the maximum output power obtained from the theoretical model conform to the experimental ones. But the theoretical short-circuit current is higher because of the existence of the contact resistance inside the cell module. In addition, the performance and cost of TPV cogeneration systems with the SiC or Yb2O3 radiator using industrial high-temperature waste heat were analyzed. The system electrical efficiency could reach 3.1% with a Yb2O3 radiator at 1573 K. The system cost and investment recovery period are 6732 EUR/kWel and 14 years, respectively.

Key wordsthermophotovoltaic (TPV)    industrial waste heat    ytterbium oxide    system efficiency
收稿日期: 2012-10-09      出版日期: 2013-06-05
Corresponding Author(s): YE Hong,Email:hye@ustc.edu.cn   
 引用本文:   
. Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes[J]. Frontiers in Energy, 2013, 7(2): 146-154.
Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU. Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes. Front Energ, 2013, 7(2): 146-154.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-013-0253-y
https://academic.hep.com.cn/fie/CN/Y2013/V7/I2/146
Fig.1  
Fig.2  
Fig.3  
RadiatorTrad/KTc/KRsRshVoc/VIsc/AnFF
SiC1273323.10.2430.4840.0911.60.61
1373329.80.8660.4640.2192.10.58
1473335.31.36231680.4510.4082.80.44
1573344.72.16010010.4320.6443.90.34
Yb2O31273302.50.1980.5240.0661.10.69
1373313.40.2450.5190.1411.20.66
1473319.90.5260.5110.2721.50.60
1573323.50.8310.5010.4221.90.52
Tab.1  
Fig.4  
Fig.5  
Trad/KVoc/VError/%Isc/AError/%Pel/WError/%
Experiment12731.89-0.63-0.79-
Model 11.88-0.10.74170.824
Model 21.88-0.10.70110.812
Experiment13731.83-1.49-1.59-
Model 11.80-0.21.77191.601
Model 21.80-0.21.68131.58-1
Experiment14731.76-2.88-2.42-
Model 11.7603.60252.482
Model 21.7603.30152.441
Experiment15731.69-4.54-3.09-
Model 11.68-0.16.00323.05-1
Model 21.68-0.15.30173.00-3
Tab.2  
Wavelength/μmTheory/%Experiment/%
0.40734.1829.65
0.65993.3492.02
0.87995.2993.18
0.97784.5279.59
Tab.3  
Fig.6  
RadiatorPrad/WFr-cPa/WPw/WPel/Wηsys,el/%ηsys/%
SiC2636.150.5121349.711297.073.080.2296.3
Tab.4  
Fig.7  
TPV1TPV2
PerformanceRadiator temperature /K15731573
Waste heat /kW103.16.53
Radiant energy absorbed by cell /kW100.06.33
Cell area/cm21093510935
System electrical efficiency/%0.53.1
Output power /W500196
Output power density /(W·cm-2)0.0460.018
Component price /EURCell200200
Cooling device600600
Radiator450500
Auxiliary equipment5019.6
Total cost13001319.6
Tab.5  
1 Fraas L M, Minkin L. TPV history from 1990 to present & future trends. AIP Conference Proceedings , 2007, 890(1): 17–23
doi: 10.1063/1.2711716
2 Lange R G, Carroll W P. Review of recent advances of radioisotope power systems. Energy Conversion and Management , 2008, 49(3): 393–401
doi: 10.1016/j.enconman.2007.10.028
3 Butcher T A, Hammonds J S, Horne E, Kamath B, Carpenter J, Woods D R. Heat transfer and thermophotovoltaic power generation in oil-fired heating systems. Applied Energy , 2011, 88(5): 1543–1548
doi: 10.1016/j.apenergy.2010.10.033
4 Xuan Y M, Chen X, Han Y G. Dsign and analysis of solar thermophotovoltaic systems. Renewable Energy , 2011, 36(1): 374–387
doi: 10.1016/j.renene.2010.06.050
5 Yang W, Chou S, Chua K, An H, Karthikeyan K, Zhao X. An advanced micro modular combustor-radiator with heat recuperation for micro-TPV system application. Applied Energy , 2012, 97: 749–753
doi: 10.1016/j.apenergy.2011.12.024
6 Saidov M S. Photothermoelectric cell for thermophotovoltaic systems and solar power plants with concentrators. Applied Solar Energy , 2012, 48(2): 67–70
doi: 10.3103/S0003701X12020168
7 Mostafa S I, Rafat N H, El-Naggar S A. One-dimensional metallic-dielectric (Ag/SiO2) photonic crystals filter for thermophotovoltaic applications. Renewable Energy , 2012, 45: 245–250
doi: 10.1016/j.renene.2012.03.001
8 Conley B R, Naseem H, Sun G, Sharps P, Yu S Q. High efficiency MJ solar cells and TPV using SiGeSn materials. In: Proceedings of 2012 38th IEEE Photovoltaic Specialists Conference (PVSC) . Austin, USA, 2012, 1189–1192
9 Bauer T, Forbes I, Pearsall N. The potential of thermophotovoltaic heat recovery for the UK industry. International Journal of Ambient Energy , 2004, 25(1): 19–25
doi: 10.1080/01430750.2004.9674933
10 Li Y H, Wu C Y, Lien Y S, Chao Y C. Development of a high-flame-luminosity thermophotovoltaic power system. Chemical Engineering Journal , 2010, 162(1): 307–313
doi: 10.1016/j.cej.2010.04.051
11 Singh P, Singh S N, Lal M, Husain M. Temperature dependence of I-V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells , 2008, 92(12): 1611–1616
doi: 10.1016/j.solmat.2008.07.010
12 Chakrabarty K, Singh S N. Depletion layer resistance and its effect on I-V characteristics of fully- and partially- illuminated siicon solar cells. Solid-State Electronics , 1996, 39(4): 577–581
doi: 10.1016/0038-1101(96)00179-7
13 Chubb D L. Fundamentals of Thermophotovoltaic Energy Conversion. Netherlands: Elsevier Science , 2007
14 Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable Sustainable Energy Reviews , 1999, 3(2,3): 77–184
15 De Soto W, Klein S A, Beckman W A. Improvement and validation of a model for photovoltaic array performance. Solar Energy , 2006, 80(1): 78–88
doi: 10.1016/j.solener.2005.06.010
16 Jain A, Kapoor A. A new method to determine the diode ideality factor of real solar cell using Lambert W-function. Solar Energy Materials and Solar Cells , 2005, 85(3): 391–396
doi: 10.1016/j.solmat.2004.05.022
17 Mao L, Ye H, Cheng Q. Numerical analysis of the thermal radiation-electricity module of TPV system. Chinese Journal of Computational Physics , 2008, 25(4): 450–457 (in Chinese)
18 Palfinger G, Bitnar B, Durisch W, Mayor J C, Grützmacher D, Gobrecht J. Cost estimates of electricity from a TPV residential heating system. In: Proceedings of the 5th Conference on Thermophotovoltaic Generation of Electricity , Rome,Italy, 2003, 653: 29–37
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed