Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2014, Vol. 8 Issue (4): 490-503   https://doi.org/10.1007/s11708-014-0311-0
  本期目录
A new technique for solving the multi-objective optimization problem using hybrid approach
Mimoun YOUNES(),Khodja FOUAD,Belabbes BAGDAD
Faculty of Technology, Djillali Liabes University, Sidi Bel Abbes 22000, Alegria
 全文: PDF(488 KB)   HTML
Abstract

Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to control greenhouse gases and to reduce CO2 emissions forced the power system operators to consider the emission problem as a consequential matter besides the economic problems. The economic power dispatch problem has, therefore, become a multi-objective optimization problem. Fuel cost, pollutant emissions, and system loss should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multi-objective optimization problem, fuel cost and pollutant emissions are converted into single optimization problem by introducing penalty factor. Now the power dispatch is formulated into a bi-objective optimization problem, two objectives with two algorithms, firefly algorithm for optimization the fuel cost, pollutant emissions and the real genetic algorithm for minimization of the transmission losses. In this paper the new approach (firefly algorithm-real genetic algorithm, FFA-RGA) has been applied to the standard IEEE 30-bus 6-generator. The effectiveness of the proposed approach is demonstrated by comparing its performance with other evolutionary multi-objective optimization algorithms. Simulation results show the validity and feasibility of the proposed method.

Key wordseconomic power dispatch (EPD)    firefly algorithm (FFA)    real genetic algorithm (RGA)    hybrid method
收稿日期: 2013-11-02      出版日期: 2015-01-09
Corresponding Author(s): Mimoun YOUNES   
 引用本文:   
. [J]. Frontiers in Energy, 2014, 8(4): 490-503.
Mimoun YOUNES,Khodja FOUAD,Belabbes BAGDAD. A new technique for solving the multi-objective optimization problem using hybrid approach. Front. Energy, 2014, 8(4): 490-503.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-014-0311-0
https://academic.hep.com.cn/fie/CN/Y2014/V8/I4/490
Fig.1  
Fig.2  
Chromosome Chromosome string Fitness
ABC 000001101110111000100000 261
D 00110100 3
Tab.1  
Chromosome label Chromosome string Fitness
E'FC 101100000110111000100000 351
B‘ 01101110 5
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Bus P G i min ? /MW P G i max ? /MW Cost coefficients
a i b i c i
PG1 50 200 0.00375 2.00 0.00
PG2 20 80 0.01750 1.75 0.00
PG5 15 50 0.06250 1.00 0.00
PG8 10 35 0.00834 3.25 0.00
PG11 10 30 0.02500 3.00 0.00
PG13 12 40 0.02500 3.00 0.00
Tab.3  
Case1 Best Cost (FFA) Case 2 Best Losses (FFA) Case 3 Best emission (FFA) Case 4 Best Comp (FFA-GA)
PG1/MW 183.6671 153.6546 155.7184 160.3670
PG2/MW 35.7766 53.7402 40.3519 52.0428
PG3/MW 24.7353 28.1859 32.8250 15.7494
PG8 /MW 11.0505 17.7983 17.3313 15.8770
PG11/MW 10.6959 17.6231 20.1661 25.4492
PG13/MW 27.3693 12.1365 20.7859 18.6795
VG1/pu 1.0177 1.0528 1.0277 0.9567
VG2/pu 1.0693 1.0965 1.0129 1.0981
VG3/pu 1.0996 0.9654 0.9822 1.0039
VG4/pu 1.0633 1.0684 1.0835 1.0740
VG5/pu 0.9728 0.9762 0.9542 1.0742
VG6/pu 1.0964 1.0334 0.9752 1.0407
TCL11 1.0828 1.0936 1.0116 1.0383
TCL12 1.0512 1.0995 0.9914 0.9200
TCL15 1.0871 1.0839 0.9101 1.0260
TCL36 1.0946 1.0882 1.0472 0.9729
QC10/pu 0.0277 0.0493 0.0496 0.0499
QC12/pu 0.0296 0.0496 0.0499 0.0416
QC15/pu 0.0418 0.0499 0.0499 0.0413
QC17/pu 0.0407 0.0488 0.0496 0.0489
QC20/pu 0.0553 0.0412 0.0497 0.0492
QC21/pu 0.0460 0.0489 0.0590 0.0498
QC23/pu 0.0439 0.0441 0.0404 0.0447
QC24/pu 0.0491 0.0499 0.0494 0.0489
QC29/pu 0.0428 0.0317 0.0492 0.0391
Fuel cost/($·h-1) 792.5764 975.56 801.5510 798.4820
Emission/(t·h-1) 0.3581 0.2028 0.2001241 0.2055
Real loss/MW 9.8950 2.7596 3.7789 4.7651
t/s 0.9687 0.4256 0.2656 0.9218
Tab.4  
Methods PG1/MW PG2/MW PG3/MW PG8/MW PG11/MW PG13/MW Loss/MW Cost/($·h-1) T/S
MSFLA [39] 179.19 48.98 20.45 20.92 11.58 11.95 9.69 802.28
GA-OPF [40] 174.83 48.88 23.78 20.2 13.14 12.22 803.92
FGA [40] 175.14 50.35 21.45 21.18 12.67 12.11 9.49 802
IEP [41] 176.24 49.01 21.5 21.81 12.34 12.01 10.87 802.47 594.08
TS [42] 176.04 48.76 21.56 22.05 12.44 12 802.29
EP [43] 173.85 50 21.39 22.63 12.93 12 802.62
Hybrid MPSO-SFLA [44] 180.53 52.09 22.78 15.49 10 12.05 9.54 801.75 18.17
PSO [44] 180.23 52.09 22.81 15.62 10 12.21 9.56 801.89 20.19
SFLA [44] 181.06 52.17 22.47 15.35 10 12.07 9.72 802.21 20.75
FFA 183.66 35.77 24.73 11.05 10.69 27.36 185.57 792.57 1.094
FFA-RGA (Case 4) 160.36 52.042 15.74 15.87 25.44 18.67 189.87 798.48 0.92
Tab.5  
Method Total active power losses/MW
EGA [45]EADDE [46]DE [46] 3.20089.139.06
HS [47] 2.9678
Tab.6  
Parameter Setting
Number of iterations FA-RGA 30
Population size for firefly(n) 10
Light absorption coefficient(γ) 1.0
Randomization parameter of FFA(α) 0.4
Attractiveness coefficient of FFA(β0) 1.0
Population size 20
Crossover (non-uniform arithmetic)mutation (non-uniform mutation)
Tab.7  
Fig.6  
Fig.7  
Fig.8  
Method Total emissions/(t·h-1)
MSFLA [47] 0.2056
SFLA [47] 0.2063
GA [47] 0.21170
PSO [47] 0.2096
PSO [39] 0.37255
Tab.8  
1 Carpentier J. Contribution to the study of economic dispatch. Bulletin of the French Society of Electricians, 1962, 3: 431–447
2 Vanderbei J R, Shanno F D. An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications, 1999, 13(1–3): 231–252
https://doi.org/10.1023/A:1008677427361
3 Bottero M H, Caliana E D, Fahmideh-Vojdani A R. Economic dispatch using the reduced hessian. IEEE Transactions on Power Apparatus and Systems, 1982, 101(10): 3679–3688
https://doi.org/10.1109/TPAS.1982.317053
4 Reid G E, Hasdorf L. Economic dispatch using quadratic programming. IEEE Transactions on Power Apparatus and Systems, 1973, 92(6): 2015–2023
https://doi.org/10.1109/TPAS.1973.293582
5 Stott B, Hobson E. Power system security control calculation using linear programming. IEEE Transactions on Power Apparatus and Systems, 1978, 97(5): 1713–1720
https://doi.org/10.1109/TPAS.1978.354664
6 Stott B, Hobson E. Power system security control calculation using linear programming. IEEE Transactions on Power Apparatus and Systems, 1978, 97(5): 1721–1731
https://doi.org/10.1109/TPAS.1978.354665
7 Momoh J A, Zhu J Z. Improved interior point method for OPF problems. IEEE Transactions on Power Systems, 1999, 14(3): 1114–1120
https://doi.org/10.1109/59.780938
8 Sun D I, Ashley B, Brewer B, Hughes A, Tinney W F. Optimal power flow by Newton approach. IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(10): 2864–2880
https://doi.org/10.1109/TPAS.1984.318284
9 Bahiense L, Oliveira G C, Pereira M, Granville S. A mixed integer disjunctive model for transmission network expansion. IEEE Transactions on Power Systems, 2001, 16(3): 560–565
https://doi.org/10.1109/59.932295
10 Dusonchet Y P, El-Abiad A H. Transmission planning using discrete dynamic optimization. IEEE Transactions on Power Apparatus and Systems, 1997, 92: 1358–1371
11 Haffner S, Monticelli A, Garcia A, Romero R. Specialised branch and bound algorithm for transmission network expansion planning. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(5): 482–488
https://doi.org/10.1049/ip-gtd:20010502
12 Glover F. Tabu search—Part I. ORSA Journal on Computing, 1986, 1(3): 190–206
13 Kirkpatrick S, Gelatt C D, Vecchi M P. Optimisation by simulated annealing. Science, 1983, 220(4598): 671–680
https://doi.org/10.1126/science.220.4598.671
14 Lai L L, Ma J T, Yokoyama R, Zhao M. Improved genetic algorithms for optimal power flow under both normal and contingent operation states. International Journal of Electrical Power & Energy Systems, 1997, 19(5): 287–292
https://doi.org/10.1016/S0142-0615(96)00051-8
15 Yuryevich J, Wong K P. Evolutionary programming based optimal power flow algorithm. IEEE Transactions on Power Systems, 1999, 14(4): 1245–1250
https://doi.org/10.1109/59.801880
16 Mousavian S, Valenzuela J, Wang J. Real-time data reassurance in electrical power systems based on artificial neural networks. Electric Power Systems Research, 2013, 96: 285–295
https://doi.org/10.1016/j.epsr.2012.11.015
17 Abido M A. Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 2002, 24(7): 563–571
https://doi.org/10.1016/S0142-0615(01)00067-9
18 Song Y H, Chou C S, Stonham T J. Combined heat and power economic dispatch by improved ant colony search algorithm. Electric Power Systems Research, 1999, 52(2): 115–121
https://doi.org/10.1016/S0378-7796(99)00011-5
19 Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods Applied Mechanics and Engineering, 2008, 197(33–40): 3080–3091
20 Abido M A. A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electric Power Systems Research, 2003, 65(1): 71–81
https://doi.org/10.1016/S0378-7796(02)00221-3
21 Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 315–329
https://doi.org/10.1109/TEVC.2005.857073
22 Yang X S. Review of meta-heuristic and generalized evolutionary walk algorithm. International Journal of Bio-Inspired Computation, 2011, 3(2): 77–84
https://doi.org/10.1504/IJBIC.2011.039907
23 Amiri B, Hossain L, Crawford J W, Wigand R T. Community detection in complex networks: multi-objective enhanced firefly algorithm. Knowledge-Based Systems, 2013, 46: 1–11
https://doi.org/10.1016/j.knosys.2013.01.004
24 Gandomi A H, Yang X S, Talatahari S, Alavi A H. Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1): 89–98
https://doi.org/10.1016/j.cnsns.2012.06.009
25 Senapati M R, Dash P K. Local linear wavelet neural network based breast tumor classification using firefly algorithm. Neural Computing & Applications, 2013, 22(7–8): 1591–1598
https://doi.org/10.1007/s00521-012-0927-0
26 Fister I, Yang X S, Brest J, Fister I Jr. Modified firefly algorithm using quaternion representation. Expert Systems with Applications, 2013, 40(18): 7220–7230
https://doi.org/10.1016/j.eswa.2013.06.070
27 Kazem A, Sharifi E, Hussain F K, Saberi M, Hussain O K. Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Applied Soft Computing, 2013, 13(2): 947–958
https://doi.org/10.1016/j.asoc.2012.09.024
28 Yang X S. Multiobjective firefly algorithm for continuous optimization. Engineering with Computers, 2013, 29(2): 175–184
https://doi.org/10.1007/s00366-012-0254-1
29 Yang X S. Nature-Inspired Metaheuristic Algorithms. Bristol: Luniver Press, 2008
30 Yang X S. Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, 2010: 221–230
31 Basu B, Mahanti G K. Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Progress in Electromagnetic Research B, 2011, 32: 169–190
https://doi.org/10.2528/PIERB11053108
32 Yazdani A, Jayabarathi T, Ramesh V, Raghunathan T. Combined heat and power economic dispatch problem using firefly algorithm. Frontiers in Energy, 2013, 7(2): 133–139
https://doi.org/10.1007/s11708-013-0248-8
33 Holland J. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: The University of Michigan Press, 1975
34 Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Educational Publishers Inc, 1989
35 Younes M, Rahli M, Koridak L A. Optimal power flow based on hybrid genetic algorithm. Journal of Information Science and Engineering, 2007, 23: 1801–1816
36 Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. In: Mcdonnell J R, Renolds R G, Fogel D B, eds. Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press, 1995, 135–155
37 Caorsi S, Massa A, Pastorino M. A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1697–1708
https://doi.org/10.1109/36.851968
38 Oyama A, Obayashi S, Nakamura T. Real-coded adaptive range genetic algorithm applied to transonic wing optimization. Applied Soft Computing, 2001, 1(3): 179–187
https://doi.org/10.1016/S1568-4946(01)00017-5
39 Niknam T, Narimani M R, Jabbari M, Malekpour A R. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy, 2011, 36(11): 6420–6432
https://doi.org/10.1016/j.energy.2011.09.027
40 Saini A, Chaturvedi D K, Saxena A K. Optimal power flow solution: a GA-fuzzy system approach. International Journal of Emerging Electric Power Systems, 2006, 5(2): 1–21
https://doi.org/10.2202/1553-779X.1091
41 Ongsakul W, Tantimaporn T. Optimal power flow by improved evolutionary programming. Electric Power Components and Systems, 2006, 34(1): 79–95
https://doi.org/10.1080/15325000691001458
42 Abido M A. Optimal power flow using tabu search algorithm. Electric Power Components and Systems, 2002, 30(5): 469–483
https://doi.org/10.1080/15325000252888425
43 Yuryevich J, Wong K P. Evolutionary programming based optimal power flow algorithm. IEEE Transactions on Power Systems, 1999, 14(4): 1245–1250
https://doi.org/10.1109/59.801880
44 Narimani M R, Azizipanah-Abarghooee R, Zoghdar-Moghadam-Shahrekohne B, Gholami K. A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy, 2013, 49: 119–136
https://doi.org/10.1016/j.energy.2012.09.031
45 Sailaja Kunari M, Maheswarapu S. Enhanced genetic algorithm based computation technique for multi-objective optimal power flow. International Journal of Electrical Power & Energy Systems, 2010, 32(6): 736–742
https://doi.org/10.1016/j.ijepes.2010.01.010
46 Vaisakh K, Srinivas L R. A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis. Energy, 2010, 35(8): 3155–3171
https://doi.org/10.1016/j.energy.2010.03.051
47 Rezaei Adaryani M, Karami A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem. International Journal of Electrical Power & Energy Systems, 2013, 53: 219– 230
https://doi.org/10.1016/j.ijepes.2013.04.021
48 Perez-Guerrero R E, Cedefio-Maldonado J R. Differential evolution based economic environmental power dispatch. In: Proceedings of the 37th Annual North American Power Symposium. Piscataway, USA: NJ IEEE Service Center, 2005, 191–197
49 Wang L, Singh C. Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electric Power Systems Research, 2008, 78(8): 1361–1368
https://doi.org/10.1016/j.epsr.2007.12.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed