Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2014, Vol. 8 Issue (3): 335-344   https://doi.org/10.1007/s11708-014-0325-7
  本期目录
Rapid transaction to load variations of active filter supplied by PV system
M. BENADJA(),S. SAAD(),A. BELHAMRA
Laboratoire Systèmes électromécaniques, Badji-Mokhtar Annaba University, B.P.12, Annaba 23000, Alegria
 全文: PDF(1314 KB)   HTML
Abstract

This paper deals with the analysis and control of a photovoltaic (PV) system connected to the main supply through a Boost converter and shunt active filter supplied by a PV system providing continuous supply of nonlinear load in variation. A robust control of a PV system connected to the grid while feeding a variable nonlinear load is developed and highlighted. This development is based on the control of the Boost converter to extract the maximum power from the PV system using the Perturb and Observe (P and O) algorithm in the presence of temperature and illumination. The proposed modeling and control strategy provide power to the variable nonlinear load and facilitates the transfer of power from solar panel to the grid while improving the quality of energy (harmonic currents compensation, power factor compensation and dc bus voltage regulation). Validation of the developed model and control strategy is conducted using power system simulator Sim-Power System Blockset Matlab/Simulink. To demonstrate the effectiveness of the shunt active filter to load changes, the method of instantaneous power (pq theory) is used to identify harmonic currents. The obtained results show an accurate extraction of harmonic currents and perfect compensation of both reactive power and harmonic currents with a lower THD and in accordance with the IEEE-519 standard.

Key wordssolar panels    maximum power point tracking (MPPT)    DC/DC converter (Boost)    shunt active filter    instantaneous power control    power quality    harmonics    imbalances    reactive energy
收稿日期: 2013-10-19      出版日期: 2014-09-10
Corresponding Author(s): M. BENADJA   
 引用本文:   
. [J]. Frontiers in Energy, 2014, 8(3): 335-344.
M. BENADJA,S. SAAD,A. BELHAMRA. Rapid transaction to load variations of active filter supplied by PV system. Front. Energy, 2014, 8(3): 335-344.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-014-0325-7
https://academic.hep.com.cn/fie/CN/Y2014/V8/I3/335
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Main source parametersLoad parametersFilter control parametersLines parametersBoost parametersPanel parameters
VrmsPh-Ph=208 VPhase= 0°Freq.=60 HzRch = 10 ? Lch= 10 mHlCapacity Cdc = 500 μFVdc = 500 VlPI controller for:DC voltage: Kp = 0.5Ki = 10Current: Kp = 1000Ki = 5lSource:Rsour=0.001?Lsour = 0.9 mHlLoad:Rload=0.001?Lload = 0.5 mHlFilter:Rfil=0.001?Lfil = 5 mHL=7 mHC = 2000 μFRp = 120 ?Rs = 0.05 ?Io = 1e-9Ns = 800Np = 150
Tab.1  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Khatod D K, Pant V, Sharma J. Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources. IEEE Transactions on Energy Conversion, 2010, 25(2): 535–545
doi: 10.1109/TEC.2009.2033881
2 Keyhani A, Marwali M N, Dai M. Integration of Green and Renewable Energy in Electric Power Systems. Wiley, 2009
3 Keyhani A.Design of Smart Power Grid Renewable Energy Systems. John Wiley & Son, Inc. and IEEE Publication, 2011
4 Tan Y K, Panda S K. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4424–4435
doi: 10.1109/TIE.2010.2102321
5 Guan X, Xu Z, Jia Q S. Energy-efficient buildings facilitated by microgrid. IEEE Transactions on Smart Grid, 2010, 1(3): 243–252
doi: 10.1109/TSG.2010.2083705
6 Chen Y, Smedley K. Three-phase Boost-type grid-connected inverter. IEEE Transactions on Power Electronics, 2008, 23(5): 2301–2309
doi: 10.1109/TPEL.2008.2003025
7 Mondol J D, Yohanis Y G, Norton B. Optimal sizing of array and inverter for grid-connected photovoltaic systems. Solar Energy, 2006, 80(12): 1517–1539
doi: 10.1016/j.solener.2006.01.006
8 Liu C, Chau K T, Zhang X. An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine. IEEE Transactions on Industrial Electronics, 2010, 57(3): 831–839
doi: 10.1109/TIE.2009.2022511
9 Chatterjee A, Keyhani A, Kapoor D. Identification of photovoltaic source models. IEEE Transactions on Energy Conversion, 2011, 26(3): 883–889
doi: 10.1109/TEC.2011.2159268
10 Yang D, Yin H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric and heat utilization. IEEE Transactions on Energy Conversion, 2011, 26(2): 662–670
doi: 10.1109/TEC.2011.2112363
11 de Brito M A G, Galotto L, Sampaio L P, de Azevedo e Melo G, Canesin C A. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Transactions on Industrial Electronics, 2013, 60(3): 1156–1167
doi: 10.1109/TIE.2012.2198036
12 Tsang K M, Chan W L. Three-level grid-connected photovoltaic inverter with maximum power point tracking. Energy Conversion and Management, 2013, 65: 221–227
doi: 10.1016/j.enconman.2012.08.008
13 Yang Y, Zhao F P. Adaptive perturb and observe MPPT technique for grid-connected photovoltaic inverters. Procedia Engineering, 2011, 23: 468–473
doi: 10.1016/j.proeng.2011.11.2532
14 Salas V, Alonso-Abella M, Chenlo F, Ol?as E. Analysis of the maximum power point tracking in the photovoltaic grid inverters of 5 kW. Renewable Energy, 2009, 34(11): 2366–2372
doi: 10.1016/j.renene.2009.03.012
15 Kanaan H Y, Sauriol G, Al-Haddad K. Small-signal modeling and linear control of a high efficiency dual boost single-phase power factor correction circuit. IET Power Electronics, 2009, 2(6): 665–674
doi: 10.1049/iet-pel.2008.0286
16 Mehran K, Giaouris D, Zahawi B. Stability analysis and control of nonlinear phenomena in boost converters using model-based Takagi-Sugeno fuzzy approach. IEEE Transactions on Circuits and Systems. I, Regular Papers, 2010, 57(1): 200–212
17 Oettmeier F M, Neely J, Pekarek S, DeCarlo R, Uthaichana K. MPC of switching in a boost converter using a hybrid state model with a sliding mode observer. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3453–3466
doi: 10.1109/TIE.2008.2006951
18 Czarnecki L S. Effect of supply voltage harmonics on IRP-based switching compensator control. IEEE Transactions on Power Electronics, 2009, 24(2): 483–488
doi: 10.1109/TPEL.2008.2009175
19 Salmeroìn P, Herrera R S, Vazquez J R. Mapping matrices against vectorial frame in the instantaneous reactive power compensation. IET Electric Power Application, 2007, 1(5): 727–736
doi: 10.1049/iet-epa:20060256
20 Herrera R S, Salmeron P, Kim H. Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results. IEEE Transactions on Industrial Electronics, 2008, 55(1): 184–196
doi: 10.1109/TIE.2007.905959
21 Saad S, Zellouma L. Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power. Electric Power Systems Research, 2009, 79(10): 1337–1341
doi: 10.1016/j.epsr.2009.04.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed