Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2014, Vol. 8 Issue (3): 315-321   https://doi.org/10.1007/s11708-014-0331-9
  本期目录
Flow behavior of non-spherical particle flowing in hopper
He TAO1,*(),Wenqi ZHONG2,Baosheng JIN2
1. School of Civil Construction, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450000, China
2. School of Energy & Environment, Southeast University, Nanjing 210096, China
 全文: PDF(957 KB)   HTML
Abstract

Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.

Key wordsdiscrete element method    ellipsoidal particle    flow behavior    hopper
收稿日期: 2014-02-16      出版日期: 2014-09-09
Corresponding Author(s): He TAO   
 引用本文:   
. [J]. Frontiers in Energy, 2014, 8(3): 315-321.
He TAO,Wenqi ZHONG,Baosheng JIN. Flow behavior of non-spherical particle flowing in hopper. Front. Energy, 2014, 8(3): 315-321.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-014-0331-9
https://academic.hep.com.cn/fie/CN/Y2014/V8/I3/315
Fig.1  
Fig.2  
PropertyValue
Particle density ρp/(kg·m-3)1200
Particle number850025
Particle bulk density ρb/(kg·m-3)798
Poisson’s ratioParticle γpWall γw0.40.33
Modulus of longitudinal elasticityParticle Ep/(N·m-2)1 × 109
Wall Ew/(N·m-2)3 × 109
Restitution coefficient e0.59
Friction coefficientParticle-particle μp0.4
Particle-wall μw0.25
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Fitzpatrick J J, Barringer S A, Iqbal T. Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values. Journal of Food Engineering, 2004, 61(3): 399-405
doi: 10.1016/S0260-8774(03)00147-X
2 Zhu H P, Wu Y H, Yu A B. Discrete and continuum modeling of granular flow. China Particuology, 2005, 3(6): 354-363
doi: 10.1016/S1672-2515(07)60215-2
3 Choi J, Kudrolli A, Bazant M Z. Velocity profile of granular flows inside silos and hoppers. Journal of Physics Condensed Matter, 2005, 17(24): S2533-S2548
doi: 10.1088/0953-8984/17/24/011
4 Li J, Langston P A, Webb C, Dyakowski T. Flow of sphero-disc particles in rectangular hoppers—a DEM and experimental comparison in 3D. Chemical Engineering Science, 2004, 59(24): 5917-5929
doi: 10.1016/j.ces.2004.07.022
5 Anand A, Curtis J S, Wassgren C R, Hancock B C, Ketterhagen W R. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science, 2008, 63(24): 5821-5830
doi: 10.1016/j.ces.2008.08.015
6 Chou C S, Hsu J Y. Kinematic model for granular flow in a two-dimensional flat-bottomed hopper. Advanced Powder Technology, 2003, 14(3): 313-331
doi: 10.1163/15685520360685965
7 Zhang K F, Ooi J Y. A kinematic model for solids flow in flat-bottomed silos. Geotechnique, 1998, 48(4): 545-553
doi: 10.1680/geot.1998.48.4.545
8 ohring G A, Melin S, Puhl H, Tillemans H J, Vermohlen W.Computer simulations of critical, non-stationary granular flow through a hopper. Computer Methods in Applied Mechanics and Engineering Journal1, 1995, 124(3): 273-281
9 Li J, Langston P A, Webb C, Dyakowski T. Flow of sphero-disc particles in rectangular hoppers-a DEM and experimental comparison in 3D. Chemical Engineering Science, 2004, 59(24): 5917-5929
doi: 10.1016/j.ces.2004.07.022
10 Grof Z, Kohout M, Stepanek F. Multi-scale simulation of needle-shaped particle breakage under uniaxial compaction. Chemical Engineering Science, 2007, 62(5): 1418-1429
doi: 10.1016/j.ces.2006.11.033
11 Cleary P W, Sawley M L. DEM modeling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modeling Journal, 2002, 26(2): 89-111
doi: 10.1016/S0307-904X(01)00050-6
12 Matuttis H G, Luding S, Herrmann H J. Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technology, 2000, 109(1-3): 278-292
doi: 10.1016/S0032-5910(99)00243-0
13 Houlsby G T. Potential particles: a method for modeling non-circular particles in DEM. Computers and Geotechnics, 2009, 36(6): 953-959
doi: 10.1016/j.compgeo.2009.03.001
14 Boon C W, Houlsby G T, Utili S. A new contact detection algorithm for three-dimensional non-spherical particles. Powder Technology, 2013, 248: 94-102
doi: 10.1016/j.powtec.2012.12.040
15 Wu C Y, Cocks A C F. Numerical and experimental investigations of the flow of powder into a confined space. Mechanics of Materials, 2006, 38(4): 304-324
doi: 10.1016/j.mechmat.2005.08.001
16 Mack S, Langston P, Webb C, York T. Experimental validation of polyhedral discrete element model. Powder Technology, 2011, 214(3): 431-442
doi: 10.1016/j.powtec.2011.08.043
17 Mustoe G G W, Miyata M. Material ?ow analysis of noncircular-shaped granular media using discrete element methods. Journal of Engineering Mechanics, 2001, 127(10): 1017-1026
doi: 10.1061/(ASCE)0733-9399(2001)127:10(1017)
18 Scott D M, Davidson J F, Cheah S E, Chua C, Gummow J G, Lam B P M, Reder I. Transient granular ?ows in an inclined rotating cylinder: Filling and emptying. Industrial & Engineering Chemistry Research, 2008, 48(1): 159-165
doi: 10.1021/ie800156r
19 Shardt O, Derksen J J. Direct simulations of dense suspensions of non-spherical particles. International Journal of Multiphase Flow, 2012, 47: 25-36
doi: 10.1016/j.ijmultiphaseflow.2012.06.007
20 Tao H, Zhong W, Jin B. Simulation of ellipsoidal particle flow in rectangular hopper with discrete element method. In: Proceedings of 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan, China, 2011
21 Tao H, Jin B, Zhong W, Wang X, Ren B, Zhang Y, Xiao R. Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chemical Engineering and Processing: Process Intensification, 2010, 49(2): 151-158
doi: 10.1016/j.cep.2010.01.006
22 Jin B, Tao H, Zhong W. Flow behaviors of non-spherical granular fuels in rectangular hopper. Canadian Journal of Chemical Engineering, 2010, 18(6): 931-939 (CJChE)
23 Tao H, Zhong W, Jin B. Comparison of construction method for DEM simulation of ellipsoidal particles. Canadian Journal of Chemical Engineering, 2013, 21(7): 800-807 (CJChE)
24 Coetzee C J, Els D N J. Calibration of discrete element parameters and the modeling of silo discharge and bucket filling. Computers and Electronics in Agriculture, 2009, 65(2): 198-212
doi: 10.1016/j.compag.2008.10.002
25 Ristow G H. Outflow rate and wall stress for two-dimensional hoppers. Physica A: Statistical Mechanics and its Applications, 1997, 235(3?4): 319-326
26 Verghese T M, Nedderman R M. The discharge of fine sands from conical hopper. Chemical Engineering Science, 1995, 50(19): 3143-3153
doi: 10.1016/0009-2509(95)00165-2
27 Wu J, Jiang B, Chen J, Yang Y.Multi-scale study of particle flow in silos. Advanced powder technology, 2009, 20(1): 62-73
28 Li J, Langston P A, Webb C, Dyakowski T. Flow of sphero-disc particles in rectangular hoppers-a DEM and experimental comparison in 3D. Chemical Engineering Science, 2004, 59(24): 5917-5929
doi: 10.1016/j.ces.2004.07.022
29 Goda T J, Ebert F. Three-dimensional discrete element simulations in hoppers and silos. Powder Technology, 2005, 158(1-3): 58-68
doi: 10.1016/j.powtec.2005.04.019
30 Goodey R J, Brown C J, Rotter J M. Verification of a 3-dimensonal model for filling pressures in square thin-walled silos. Engineering Structures, 2003, 25(14): 1773-1783
doi: 10.1016/j.engstruct.2003.07.003
31 Vidal P, Guaita M, Ayuga F. Analysis of dynamic discharge pressures in cylindrical slender silos with a flat bottom or with a hopper: comparison with Eurocade 1. Biosystems Engineering, 2005, 91(3): 335-348
doi: 10.1016/j.biosystemseng.2005.03.012
32 Guaita M, Couto A, Ayuga F. Numerical simulation of wall pressure during discharge of granular material from cylindrical silos with eccentric hoppers. Biosystems Engineering, 2003, 85(1): 101-109
doi: 10.1016/S1537-5110(03)00037-0
33 Zhu H P, Yu A B, Wu Y H. Numerical investigation of steady and unsteady state hopper flows. Powder Technology, 2006, 170(3): 125-134
doi: 10.1016/j.powtec.2006.09.001
34 Moreea S B M, Nedderman R M. Exact stress and velocity distributions in a cohesionless material discharging from a conical hopper. Chemical Engineering Science, 1996, 51(16): 3931-3942
doi: 10.1016/0009-2509(96)00248-5
35 Waters A J, Drescher A. Modeling plug flow in bins/hoppers. Powder Technology, 2000, 113(1-2): 168-175
doi: 10.1016/S0032-5910(00)00229-1
36 Ketterhagen W R, Curtis J S, Wassgren C R, Hancock B C. Predicting the flow mode from hoppers using the discrete element method. Powder Technology, 2009, 195(1): 1-10
doi: 10.1016/j.powtec.2009.05.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed