Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2015, Vol. 9 Issue (1): 106-114   https://doi.org/10.1007/s11708-014-0341-7
  本期目录
Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases
Ramin ROSHANDEL(), Majid ASTANEH, Farzin GOLZAR
Department of Energy Engineering, Sharif University of Technology, Tehran 14565114, Iran
 全文: PDF(482 KB)   HTML
Abstract

The aim of this paper is to investigate the implementation of a molten carbonate fuel cell (MCFC) as a CO2 separator. By applying multi-objective optimization (MOO) using the genetic algorithm, the optimal values of operating load and the corresponding values of objective functions are obtained. Objective functions are minimization of the cost of electricity (COE) and minimization of CO2 emission rate. CO2 tax that is accounted as the pollution-related cost, transforming the environmental objective to the cost function. The results show that the MCFC stack which is fed by the syngas and gas turbine exhaust, not only reduces CO2 emission rate, but also produces electricity and reduces environmental cost of the system.

Key wordsmolten carbonate fuel cell (MCFC)    multi-objective optimization (MOO)    Pareto curve    genetic algorithm    CO2 separation
收稿日期: 2014-02-13      出版日期: 2015-03-02
Corresponding Author(s): Ramin ROSHANDEL   
 引用本文:   
. [J]. Frontiers in Energy, 2015, 9(1): 106-114.
Ramin ROSHANDEL, Majid ASTANEH, Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases. Front. Energy, 2015, 9(1): 106-114.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-014-0341-7
https://academic.hep.com.cn/fie/CN/Y2015/V9/I1/106
Fig.1  
H2 CO2 H2O O2 N2 CH4
Syngas composition (Vol)/% 0.361 0.209 0.422 0 0.006 0.001
Cathode composition(Vol)/% 0 0.103 0.051 0.105 0.731 0
Tab.1  
Fig.2  
Reaction
Anode reaction H2+CO32 H2O+ CO2+2 e
Cathode reaction CO2+12O2+2e CO3 2
Overall reaction H2+ 12 O2+ CO2(cathode)H 2O+ CO2 (anode)
Tab.2  
Cost parameters Value Reference
Stack cost 4126.43 $/kW Ref. [19]
Installation cost 1141.35?$/kW Ref.[19]
Total installation cost of MCFC 5267.78?$/kW Ref.[19]
Fuel cost (Asphalt as a refinery residue) 450?$/t Ref.[20]
Plant factor 7780?h/a Ref. [19]
Plant life 25?a Ref.[19]
Inflation rate 5 %/a Ref.[19]
Tab.3  
Fig.3  
Fig.4  
Fig.5  
w J/(A·cm−2) COE/($·(kWh) −1) ER/(t·a−1)
0.0 0.130 0.35 3985
0.1 0.128 0.33 4077
0.2 0.120 0.24 4714
0.3 0.110 0.19 5403
0.4 0.100 0.17 6030
0.5 0.096 0.15 6631
0.6 0.088 0.14 7260
0.7 0.080 0.13 7915
0.8 0.072 0.12 8532
0.9 0.063 0.12 9158
1.0 0.060 0.12 9502
Tab.4  
Fig.6  
Aunit Area of a discrete unit/cm2
Ci Parameters related to electrodes and electrolytes
COP,1 Fuel cost in the first year/($•a−1)
Ctot Overall cost/$
COE Cost of electricity/ ($• (kWh)−1)
COERT Cost of electricity including carbon dioxide tax/ ($· (kWh)−1)
CT Carbon dioxide tax/ ($·t−1)
E Theoretically achievable maximum reversible potential/V
Eο Standard cell potential/V
Epry Electric energy produced per year/ (kWh•a−1)
ER Emission rate
F Faraday’s constant (96487?C equiv.-1)
Fi Molar flow rate of component i/ (mol·h−1)
Fi(x) Objective function
Gpr,1 Fuel price in the first year/ ($· (kWh)−1)
ΔG The Gibbs free energy change/ (J·mol-1)
ΔH Enthalpy/ (kJ·kmol-1)
i Current/A
I1 Total investment cost in the first year/$
Iin Specific investment cost of the installation for the MCFC/ ($•kW−1)
Iinf Inflation rate/ (%·a−1)
Isi Specific cost of a stack for the MCFC/ ($·kW−1)
j Current density/ (A·m-2)
KP Equilibrium constant
m˙CO 2,sep Separated carbon dioxide flow/ (t·h-2)
n Year
Pp Plant power/kW
PF Plant factor/ (h·a−1)
R Resistance/ (Ω· m-2)
Ran Irreversible losses at anode/ (Ω·m-2)
Rca Irreversible losses at cathode/ (Ω·m-2)
Rir Internal cell resistance/ (Ω·m-2)
Rtot The sum of irreversibility occurred at anode, cathode and electrode/ (Ω·m-2)
RTtot,1 Total reduced carbon dioxide tax in the first year/($·a−1)
T Temperature/C
V Cell voltage/V
w Weight factor
X Conversion degree
Greek letter
η Voltage loss/V
ηelec Electrical efficiency
Subscripts
an Anode
ca Cathode
CO Carbon monoxide
CO2 Carbon dioxide
e Electric
elec Electrical
H2 Hydrogen
H2O Water vapor
i Species
i, an Species at anode
i, ca Species at cathode
in Installation
inf Inflation
ir Internal resistance
ne Nernst
out Outlet
OP Operation
p Plant
pr Price
pry Produced per year
RT Reduced CO2 tax
si Stack investment cost
tot Total
Superscripts
0 Standard
max Maximum
trans Transformed
Abbreviations
GHG Greenhouse gases
IRR Internal rate of return
kWh Kilo-Watt-hour
MCFC Molten carbonate fuel cell
MOO Multi-objective optimization
PBP Payback period
  
1 L Caprile, B Passalacqua, A Torazza. Carbon capture: Energy wasting technologies or the MCFCs challenge? International Journal of Hydrogen Energy, 2011, 36(16): 10269–10277
https://doi.org/10.1016/j.ijhydene.2010.10.028
2 U Desideri. MCFC as potential concentrators in distributed generation systems: technical problems and challenges. Workshop in Fuel Cells in the Carbon Cycle,Napoli, Italy, 2010
3 U Desideri, S Proietti, P Sdringola, G Cinti, F Curbis. MCFC-based CO2 capture system for small scale CHP plants. International Journal of Hydrogen Energy, 2012, 37(24): 19295–19303
https://doi.org/10.1016/j.ijhydene.2012.05.048
4 D Jansen, A B J Oudhuis, H M van Veen. CO2 reduction potential of future coal gasification based power generation technologies. Energy Conversion and Management, 1992, 33(5–8): 365–372
https://doi.org/10.1016/0196-8904(92)90032-R
5 D Jansen, P C van der Laag, A B J Oudhuis, J S Ribberink. Prospects for advanced coal-fuelled fuel cell power plants. Journal of Power Sources, 1994, 49(1–3): 151–165
https://doi.org/10.1016/0378-7753(93)01807-T
6 K S Oh, T S Kim. Performance analysis on various system layouts for the combination of an ambient pressure molten carbonate fuel cell and a gas turbine. Journal of Power Sources, 2006, 158(1): 455–463
https://doi.org/10.1016/j.jpowsour.2005.09.032
7 U Desideri, S Proietti, G Cinti, P Sdringola, C Rossi. Analysis of pollutant emissions from cogeneration and district heating systems aimed to a feasibility study of MCFC technology for carbon dioxide separation asretrofitting of existing plants. International Journal of Greenhouse Gas Control, 2011, 5(6): 1663–1673
https://doi.org/10.1016/j.ijggc.2011.10.001
8 S Campanari. Carbon dioxide separation from high temperature fuel cell power plants. Journal of Power Sources, 2002, 112(1): 273– 289
https://doi.org/10.1016/S0378-7753(02)00395-6
9 M Lusardi, B Bosio, E Arato. An example of innovative application in fuel cell system development: CO2 segregation using molten carbonate fuel cells. Journal of Power Sources, 2004, 131(1–2): 351–360
https://doi.org/10.1016/j.jpowsour.2003.11.091
10 G Discepoli, G Cinti, U Desideri, D Penchini, S Proietti. Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment. International Journal of Greenhouse Gas Control, 2012, 9: 372–384
https://doi.org/10.1016/j.ijggc.2012.05.002
11 J Milewski, J Lewandowski. Separating CO2 from flue gases using a molten carbonate fuel cell. IERI Procedia, 2012, 1: 232–237
https://doi.org/10.1016/j.ieri.2012.06.036
12 R T Marler, J S Arora. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 2004, 26(6): 369–395
https://doi.org/10.1007/s00158-003-0368-6
13 U.S. Energy Information Administration. U.S. sulfur content (weighted average) of crude oil input to refineries. 2012-03-23
14 L Farina, L Bressan. Solving the heavy fuel oil problem. Heat Engine, 1998, 62: 24–28
15 P Greppi, B Bosio, E Arato. Feasibility of the integration of a molten carbonate fuel-cell system and an integrated gasification combined cycle. International Journal of Hydrogen Energy, 2009, 34(20): 8664–8669
https://doi.org/10.1016/j.ijhydene.2009.08.012
16 V Spallina, M C Romano, S Campanari, G Lozza. Application of MCFC in coal gasification plants for high efficiency CO2 capture. Journal of Engineering for Gas Turbines and Power, 2012, 134(1): 011701
https://doi.org/10.1115/1.4004128
17 M Baranak, H Atakul. A basic model for analysis of molten carbonate fuel cell behaviour. Journal of Power Sources, 2007, 172(2): 831–839
https://doi.org/10.1016/j.jpowsour.2007.05.027
18 H Morita, M Komoda, Y Mugikura, Y Izaki, T Watanabe, Y Masuda, T Matsuyama. Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. Journal of Power Sources, 2002, 112(2): 509–518
https://doi.org/10.1016/S0378-7753(02)00468-8
19 S A Song, J Han, S P Yoon, S W Nam, I H Oh, D K Choi. Economic feasibility study for Molten Carbonate Fuel Cells fed with biogas. Journal of Electrochemical Science and Technology, 2010, 1(2): 102–111
https://doi.org/10.5229/JECST.2010.1.2.102
20 Argus Media. Argus Asphalt Report Issue 14–31. 2014-08-01
21 Carbon Tax Center (CTC). Where carbon is taxed? 2014-10-31
22 J Milewski, M Wolowicz, A Miller, R Bernat. A reduced order model of molten carbonate fuel cell: a proposal. International Journal of Hydrogen Energy, 2013, 38(26): 11565–11575
https://doi.org/10.1016/j.ijhydene.2013.06.002
23 International Energy Agency. Cost and performance of carbon dioxide capture from power generation. 2011
24 M F Ruth, M Antkowiak. Analysis of fuel cell integration with biofuels production. 2013-05-14
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed