Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2015, Vol. 9 Issue (4): 371-386   https://doi.org/10.1007/s11708-015-0371-9
  本期目录
Performance analysis of combined cycle power plant
Nikhil DEV(),Rajesh ATTRI
Department of Mechanical Engineering, YMCA University of Science and Technology, Faridabad 121006, India
 全文: PDF(2626 KB)   HTML
Abstract

Combined cycle power plants (CCPPs) are in operation with diverse thermodynamic cycle configurations. Assortment of thermodynamic cycle for scrupulous locality is dependent on the type of fuel available and different utilities obtained from the plant. In the present paper, seven of the practically applicable configurations of CCPP are taken into consideration. Exergetic and energetic analysis of each component of the seven configurations is conducted with the help of computer programming tool, i.e., engineering equation solver (EES) at different pressure ratios. For Case 7, the effects of pressure ratio, turbine inlet temperature and ambient relative humidity on the first and second law is studied. The thermodynamics analysis indicates that the exergy destruction in various components of the combined cycle is significantly affected by the overall pressure ratio, turbine inlet temperature and pressure loss in air filter and less affected by the ambient relative humidity.

Key wordsfirst-law    second-law    exergy destruction    components
收稿日期: 2014-12-11      出版日期: 2015-11-04
Corresponding Author(s): Nikhil DEV   
 引用本文:   
. [J]. Frontiers in Energy, 2015, 9(4): 371-386.
Nikhil DEV,Rajesh ATTRI. Performance analysis of combined cycle power plant. Front. Energy, 2015, 9(4): 371-386.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-015-0371-9
https://academic.hep.com.cn/fie/CN/Y2015/V9/I4/371
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Components Exergy destruction rate
Air compressor e D,AC = e inAC e outAC + W ˙ AC
CC e D,CC = e inCC + e f e outCC
GT e D,GT = ( e inGT e outGT ) W ˙ GT
HE e D,HE   =   m air ( e aiHE   e aoHE )   +   m gas ( e giHE   e goHE )    
WHRB e D,WHRB =     m gas ( e ginWHRB     e goutWHRB )     m w ( e woutWHRB     e winWHRB )
Air filter e D,AF = m a ( e aiAF e aoAF )
Air humidifier e D,AH = m aiAH e aiAH + m w e w m aoAH e aoAH
ST e D,ST = m s ( e winST e woutST ) W ST
Feedwater heater first e D,FWH1 = m s 1 e 14 + ( m s m s1 ) e 20 m s e 21
Feedwater heater second e D,FWH2 = m s2 e 15 + ( m s m s1 m s2 ) e 18 ( m s m s1 ) e 19
Condenser e D,COND = ( m s m s1 ) ( e win e wout ) + m cw ( e cwin e cwout )
Pump e D,P = W P + m s ( e win e wout )
Tab.1  
Fig.8  
Component Quantified assumption
Pressure losses in air filter at 100% air flow/mbar 3.5
Relative humidity at air humidifiers outlet/% 100
Pressure drop for air in the air intercooler/% 1
The pressure drop for air in the AC/% 1
Pressure drop for gas in the regenerative HE/% 2
Pressure drop in the CC and REH/% 4
Pressure drop in the waste heat recovery boiler/% 4
Effectiveness for the AC/% 85
Effectiveness of the air intercooler/% 90
Effectiveness of the regenerative HE/% 55
Compressor isentropic efficiency/% 87
GT isentropic efficiency/% 89
Efficiency of the CC and REH/% 95
Generator efficiency/% 97
Steam pressure at the ST inlet/bar 25
Steam temperature at the ST inlet/K 567
ST exhaust pressure/bar 0.09
Temperature rise of cooling water in condenser/K 283.98
Cooling water inlet temperature in condenser/K 298
Cooling water outlet temperature from condenser/K 309
Stack temperature/K 413
Pump isentropic efficiency/% 85
Turbine isentropic efficiency/% 85
Tab.2  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
Fig.32  
Fig.33  
Fig.34  
Fig.35  
Fig.36  
Fig.37  
E · Exergy rate/(kJ·s−1)
LHV Lower heating value
R Gas constant/(kJ·kg−1·K−1)
RH Relative humidity
T Absolute temperature/K
W Work/(kJ·kg−1 (dry air))
cp Specific heat at constant pressure/(kJ·kg−1·K−1)
cv Specific heat at constant volume/(kJ·kg−1·K−1)
e Specific exergy/(kJ·kg−1 (dry air))
h Enthalpy/(kJ·kg−1 (dry air))
hf Enthalpy of saturated water at process steam pressure
hg Enthalpy of saturated vapor at process steam pressure
m Mass/kg
n Number of moles
p Pressure/bar
Qp Process heat/(kJ·kg−1 (dry air))
rp Compression ratio
s Entropy/(kJ·kg−1·K−1)
t Temperature/K
V Specific volume/(m3·kg−1)
Tab.3  
ω Humidity ratio (kg of water vapor per kg of dry air)
φ Relative humidity/%
ε Effectiveness/%
η Efficiency/%
γ Specific heat ratio
Tab.4  
AC Air compressor
CC Combustion chamber
D Destruction
GT Gas turbine
P Product
Q Heat
R Regenerator
SG Steam generator
W Work
a Ambient air
av Average
f Fuel
g Gas
i Inlet
l Liquid
o Outlet
sat Saturated
v Water vapor
w Water
Tab.5  
1 Klara  J M, Izsak  M S, Wherley  M R. Advanced power generation: the potential of indirectly-fired combined cycles. ASME Paper, 1995, Paper No. 95-GT-261
2 Solomon  P R, Serio  M A, Cosgrove  J E, Pines  D S, Zhao  Y, Buggeln  R C, Shamroth  S J. A coal-fired heat exchanger for an externally fired gas turbine. Journal of Engineering for Gas Turbines and Power, 1996, 118(1): 22–31
https://doi.org/10.1115/1.2816545
3 McDonald  C F, Wilson  D G. The utilization of recuperated and regenerated engine cycles for high-efficiency gas turbines in the 21st century. Applied Thermal Engineering, 1996, 16(8–9): 635–653
https://doi.org/10.1016/1359-4311(95)00078-X
4 Jonsson  M, Yan  J. Humidified gas turbines—a review of proposed and implemented cycles. Energy, 2005, 30(7): 1013–1078
https://doi.org/10.1016/j.energy.2004.08.005
5 McCarthy  S J, Scott  I. The WR-21 intercooled recuperated gas turbine engine—operation and integration into the royal navy type 45 destroyer system. Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, Netherlands, 2002, 977–984
6 Vandervort  C L, Bary  M R, Stoddard  L E, Higgins  S T. Externally-fired combined cycle: repowering of existing steam plants. ASME Paper, 1993, Paper No. 93-GT-359
7 Gaggioli  R A. The concept of available energy. Chemical Engineering Science, 1961, 16(1–2): 87–96
https://doi.org/10.1016/0009-2509(61)87010-3
8 Dev  N, Samsher, Kachhwaha  S S, Attri  R. Exergy analysis and simulation of a 30 MW cogeneration cycle. Frontiers of Mechanical Engineering, 2013, 8(2): 169–180
https://doi.org/10.1007/s11465-013-0263-9
9 Dev  N, Samsher, Kachhwaha  S S, Attri  R. Development of reliability index for combined cycle power plant using graph theoretic approach. Ain Shams Engineering Journal, 2014, 5(1): 193–203
https://doi.org/10.1016/j.asej.2013.09.010
10 Dev  N, Goyal  G K, Attri  R, Kumar  N. Graph theoretic analysis of advance combined cycle power plants alternatives with latest gas turbines. In: Proceedings of ASME 2013 Gas Turbine India Conference (GTINDIA2013). Bangalore, India, 2013
11 Dev  N, Samsher, Kachhwaha  S S, Attri R. GTA-based framework for evaluating the role of design parameters in cogeneration cycle power plant efficiency. Ain Shams Engineering Journal, 2013, 4(2): 273–284
https://doi.org/10.1016/j.asej.2012.08.002
12 Dev  N, Samsher, Kachhwaha  S S, Attri  R. GTA modeling of combined cycle power plant efficiency analysis. Ain Shams Engineering Journal, 2015, 6(1): 217–237
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed