Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (1): 32-41   https://doi.org/10.1007/s11708-016-0427-5
  本期目录
Impact of thermal processes on multi-crystalline silicon
Moonyong KIM1(),Phillip HAMER1,2,Hongzhao LI1,David PAYNE1,Stuart WENHAM1,Malcolm ABBOTT1,Brett HALLAM1
1. School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
2. Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
 全文: PDF(630 KB)   HTML
Abstract

Fabrication of modern multi-crystalline silicon solar cells involves multiple processes that are thermally intensive. These include emitter diffusion, thermal oxidation and firing of the metal contacts. This paper illustrates the variation and potential effects upon recombination in the wafers due to these thermal processes. The use of light emitter diffusions more compatible with selective emitter designs had a more detrimental effect on the bulk lifetime of the silicon than that of heavier diffusions compatible with a homogenous emitter design and screen-printed contacts. This was primarily due to a reduced effectiveness of gettering for the light emitter. This reduction in lifetime could be mitigated through the use of a dedicated gettering process applied before emitter diffusion. Thermal oxidations could greatly improve surface passivation in the intra-grain regions, with the higher temperatures yielding the highest quality surface passivation. However, the higher temperatures also led to an increase in bulk recombination either due to a reduced effectiveness of gettering, or due to the presence of a thicker oxide layer, which may interrupt hydrogen passivation. The effects of fast firing were separated into thermal effects and hydrogenation effects. While hydrogen can passivate defects hence improving the performance, thermal effects during fast firing can dissolve precipitating impurities such as iron or de-getter impurities hence lower the performance, leading to a poisoning of the intra-grain regions.

Key wordsgettering    grain boundaries    hydrogen    impurities    oxidation    passivation    solar cell
收稿日期: 2016-05-06      出版日期: 2016-11-16
Corresponding Author(s): Moonyong KIM   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(1): 32-41.
Moonyong KIM,Phillip HAMER,Hongzhao LI,David PAYNE,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM. Impact of thermal processes on multi-crystalline silicon. Front. Energy, 2017, 11(1): 32-41.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-016-0427-5
https://academic.hep.com.cn/fie/CN/Y2017/V11/I1/32
Fig.1  
Fig.2  
Recipe Sheet resistance/(W·sq–1)
No oxidation 68
700°C oxidation 82
750°C oxidation 84
800°C oxidation 86
850°C oxidation 94
890°C oxidation 105
890°C annealing (nitrogen) 86
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 ITRPV. International Technology Roadmap for Photovoltaic. International Technology Roadmap for Photovoltaic Results 2015, 7th edition. Frankfurt. 2016,
2 Trina Solar. Trina solar announces new efficiency record of 21.25% efficiency for multi-crystalline silicon solar cell. 2015,
3 Yang Y M, Yu A, Hsu B, Hsu W C, Yang A, Lan C W. Development of high-performance multicrystalline silicon for photovoltaic industry. Progress in Photovoltaics: Research and Applications, 2015, 23(3): 340–351
https://doi.org/10.1002/pip.2437
4 Dupont Solamet. Newest generation front side silver paste delivers superior efficiency for p-type solar cells. 2015,
5 Blakers A W, Wang A, Milne A M, Zhao J, Green M A. 22.8% efficient silicon solar cell. Applied Physics Letters, 1989, 55(13): 1363–1365
https://doi.org/10.1063/1.101596
6 Macdonald D, Cuevas A. The trade-off between phosphorus gettering and thermal degradation in multicrystalline silicon, 2000
7 Boudaden J, Monna R, Loghmarti M, Muller J C. Comparison of phosphorus gettering for different multicrystalline silicon. Solar Energy Materials and Solar Cells, 2002, 72(1): 381–387
https://doi.org/10.1016/S0927-0248(01)00186-6
8 Périchaud I. Gettering of impurities in solar silicon. Solar Energy Materials and Solar Cells, 2002, 72(1-4): 315–326
https://doi.org/10.1016/S0927-0248(01)00179-9
9 Bentzen A, Holt A. Overview of phosphorus diffusion and gettering in multicrystalline silicon. Materials Science and Engineering B, 2009, 159–160(11): 228–234
https://doi.org/10.1016/j.mseb.2008.10.060
10 Buonassisi T, Istratov A A, Pickett M D, Heuer M, Kalejs J P, Hahn G, Marcus M A, Lai B, Cai Z, Heald S M, Ciszek T F, Clark R F, Cunningham D W, Gabor A M, Jonczyk R, Narayanan S, Sauar E, Weber E R. Chemical natures and distributions of metal impurities in multicrystalline. Progress in Photovoltaics: Research and Applications, 2006, 14(6): 513–531
https://doi.org/10.1002/pip.690
11 Bentzen A, Holt A, Kopecek R, Stokkan G, Christensen J S, Svensson B G. Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing. Journal of Applied Physics, 2006, 99(9): 093509
https://doi.org/10.1063/1.2194387
12 Fenning D P, Hofstetter J, Bertoni M I, Coletti G, Lai B, del Cañizo C, Buonassisi T. Precipitated iron: a limit on gettering efficacy in multicrystalline silicon. Journal of Applied Physics, 2013, 113(4): 044521
https://doi.org/10.1063/1.4788800
13 Liu A, Sun C, Macdonald D. Hydrogen passivation of interstitial iron in boron-doped multicrystalline silicon during annealing. Journal of Applied Physics, 2014, 116(19): 194902
https://doi.org/10.1063/1.4901831
14 Lelièvre J F, Hofstetter J, Peral A, Hoces I, Recart F, del Cañizo C. Dissolution and gettering of iron during contact co-firing. Energy Procedia, 2011, 8: 257–262
https://doi.org/10.1016/j.egypro.2011.06.133
15 Tan J, MacDonald D, Bennett N, Kong D, Cuevas A, Romijn I. Dissolution of metal precipitates in multicrystalline silicon during annealing and the protective effect of phosphorus emitters. Applied Physics Letters, 2007, 91(4): 043505
https://doi.org/10.1063/1.2766664
16 Sinton R A, Cuevas A. Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Applied Physics Letters, 1996, 69(17): 2510–2512
https://doi.org/10.1063/1.117723
17 Richter A, Werner F, Cuevas A, Schmidt J, Glunz S W. Improved parameterization of Auger recombination in silicon. Energy Procedia, 2012, 27: 88–94
https://doi.org/10.1016/j.egypro.2012.07.034
18 Kane D E, Swanson R M. Measurement of the emitter saturation current by a contactless photoconductivity decay method. The 18th IEEE Photovoltaic Specialists Conference,1985: 578–58
19 Trupke T, Bardos R A, Schubert M C, Warta W. Photoluminescence imaging of silicon wafers. Applied Physics Letters, 2006, 89(4): 044107
https://doi.org/10.1063/1.2234747
20 Teal A, Juhl M. Correcting the inherent distortion in luminescence images of silicon solar cells. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015: 1–5
21 Mimura M, Ishikawa S, Saitoh T. Effect of thermal annealing on minority-carrier lifetimes for multicrystalline silicon wafers. Technical Digest of the 11th Photovoltaic Scientists and Engineers Conference, 1999: 357–358
22 Xu H B, Hong R J, Ai B, Zhuang L, Shen H. Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells. Applied Energy, 2010, 87(11): 3425–3430
https://doi.org/10.1016/j.apenergy.2010.03.026
23 Chen J, Yang D, Xi Z, Sekiguchi T. Electron-beam-induced current study of hydrogen passivation on grain boundaries in multicrystalline silicon : influence of GB character and impurity contamination. Physica B, Condensed Matter, 2005, 364(1-4): 162–169
https://doi.org/10.1016/j.physb.2005.04.008
24 Hallam B J, Hamer P G, Wang S, Song L, Nampalli N, Abbott M D, Chan C E, Lu D, Wenham A M, Mai L, Borojevic N, Li A, Chen D, Kim M Y, Azmi A, Wenham S. Advanced hydrogenation of dislocation clusters and boron-oxygen defects in silicon solar cells. Energy Procedia, 2015, 77: 799–809
https://doi.org/10.1016/j.egypro.2015.07.113
25 Geerligs L J, Komatsu Y, Röver I, Wambach K, Yamaga I, Saitoh T. Precipitates and hydrogen passivation at crystal defects in n- and p-type multicrystalline silicon. Journal of Applied Physics, 2007, 102(9): 093702
https://doi.org/10.1063/1.2800271
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed