Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (1): 52-59   https://doi.org/10.1007/s11708-016-0429-3
  本期目录
SiO2 passivation layer grown by liquid phase deposition for silicon solar cell application
Yanlin CHEN1,Sihua ZHONG1(),Miao TAN1,Wenzhong SHEN2()
1. Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2. Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
 全文: PDF(327 KB)   HTML
Abstract

Surface passivation is one of the primary requirements for high efficient silicon solar cells. Though the current existed passivation techniques are effective, expensive equipments are required. In this paper, a comprehensive understanding of the SiO2 passivation layer grown by liquid phase deposition (LPD) was presented, which was cost-effective and very simple. It was found that the post-annealing process could significantly enhance the passivation effect of the LPD SiO2 film. Besides, it was revealed that both chemical passivation and field-effect passivation mechanisms played important roles in outstanding passivation effect of the LPD SiO2 film through analyzing the minority carrier lifetime and the surface recombination velocity of n-type and p-type silicon wafers. Although the deposition parameters had little influence on the passivation effect, they affected the deposition rate. Therefore, appropriate deposition parameters should be carefully chosen based on the compromise of the deposition rate and fabrication cost. By utilizing the LPD SiO2 film as surface passivation layer, a 19.5%-efficient silicon solar cell on a large-scale wafer (156 mm × 156 mm) was fabricated.

Key wordsSi solar cell    passivation    SiO2    liquid phase deposition    carrier lifetime
收稿日期: 2016-07-08      出版日期: 2016-11-16
Corresponding Author(s): Sihua ZHONG,Wenzhong SHEN   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(1): 52-59.
Yanlin CHEN,Sihua ZHONG,Miao TAN,Wenzhong SHEN. SiO2 passivation layer grown by liquid phase deposition for silicon solar cell application. Front. Energy, 2017, 11(1): 52-59.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-016-0429-3
https://academic.hep.com.cn/fie/CN/Y2017/V11/I1/52
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Zhao J H, Wang A H, Green M A, Ferrazza F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998, 73(14): 1991–1993
https://doi.org/10.1063/1.122345
2 Schultz O, Glunz S W, Willeke G P. Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004, 12(7): 553–558
https://doi.org/10.1002/pip.583
3 Schultz O, Mette A, Hermle M, Glunz S W. Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 317–324
https://doi.org/10.1002/pip.814
4 Hoex B, Peeters F J J, Creatore M, Blauw M A, Kessels W M M, van de Sanden M C M. High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2006, 24(5): 1823–1830
https://doi.org/10.1116/1.2232580
5 Nagayama H, Honda H, Kawahara H. A new process for silica coating. Journal of the Electrochemical Society, 1988, 135(8): 2013–2016
https://doi.org/10.1149/1.2096198
6 Huang C J, Houng M P, Wang Y H, Wang N F, Chen JR. Improved formation of silicon dioxide films in liquid phase deposition. Journal of Vacuum Science & Technology A, 1998, 16(4): 2646–2652
https://doi.org/10.1116/1.581395
7 Huang C J. Quality optimization of liquid phase deposition SiO2 films on silicon. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 7A 7A): 4622–4625
https://doi.org/10.1143/JJAP.41.4622
8 Yu S J, Lee J S, Nozaki S, Cho J. Microstructure developments of F-doped SiO2 thin films prepared by liquid phase deposition. Thin Solid Films, 2012, 520(6): 1718–1723
https://doi.org/10.1016/j.tsf.2011.08.039
9 Lin T, Jiang K, Zhou B X, Xu S F, Cai W B. Liquid-phase-deposited silicon oxide film as a mask for single-sided texturing of monocrystalline Si wafers. ACS Applied Materials & Interfaces, 2014, 6(2): 1207–1212
https://doi.org/10.1021/am404943y
10 Huang C J, Chen J R, Huang S P. Silicon dioxide passivation of gallium arsenide by liquid phase deposition. Materials Chemistry and Physics, 2001, 70(1): 78–83
https://doi.org/10.1016/S0254-0584(00)00463-6
11 Wu H R, Lee K W, Nian T B, Chou D W, Huang Wu J J, Wang Y H, Houng M P, Sze P W, Su Y K, Chang S J, Ho C H, Chiang C I, Chern Y T, Juang F S, Wen T C, Lee W I, Chyi J I. Liquid phase deposited SiO2 on GaN. Materials Chemistry and Physics, 2003, 80(1): 329–333
https://doi.org/10.1016/S0254-0584(02)00504-7
12 Lee K W, Huang J S, Lu Y L, Lee F M, Lin H C, Huang J J, Wang Y H. Liquid-phase-deposited SiO2 on AlGaAs and its application. Semiconductor Science and Technology, 2011, 26(5): 055006
https://doi.org/10.1088/0268-1242/26/5/055006
13 Yuan H C, Oh J H, Zhang Y C, Kuznetsov O A, Flood D J, Branz H M. Antireflection and SiO2 surface passivation by liquid-phase chemistry for efficient black silicon solar cells. In: 38th IEEE Photovoltaic Specialists Conference. Austin, TX, 2012, 686–689
14 He J, Ke Y C, Zhang G L, Deng Q C, Shen H, Lu S C, Qin M R, Wang X, Zeng C L. Liquid phase deposited SiO2 on multi-crystalline silicon. Polymers Research Journal, 2015, 9: 57–65
15 Mansour A N. Characterization of NiO by XPS. Surface Science Spectra, 1994, 3(3): 231–238
https://doi.org/10.1116/1.1247751
16 Wang H L, Fang M S, Shi T J, Zhai L F, Tang C. Preparation of porous poly (lactic acid)/SiO2 hybrid microspheres. Journal of Applied Polymer Science, 2006, 102(1): 679–683
https://doi.org/10.1002/app.24122
17 Yeh C F, Chen C L, Lur W, Yen P W. Bond-structure changes of liquid phase deposited oxide (SiO2-xFx) on N2 annealing. Applied Physics Letters, 1995, 66(8): 938–940
https://doi.org/10.1063/1.113603
18 Grunthaner P J, Hecht M H, Grunthaner F J, Johnson N M. The localization and crystallographic dependence of Si subdioxide species at the SiO2/Si interface. Journal of Applied Physics, 1987, 61(2): 629–638
https://doi.org/10.1063/1.338215
19 Hiller D, Zierold R, Bachmann J, Alexe M, Yang Y, Gerlach J W, Stesmans A, Jivanescu M, Müller U, Vogt J, Hilmer H, Löper P, Künle M, Munnik F, Nielsch K, Zacharias M. Low temperature silicon dioxide by thermal atomic layer deposition: investigation of material properties. Journal of Applied Physics, 2010, 107(6): 064314
https://doi.org/10.1063/1.3327430
20 Lucovsky G, Mantini M J, Srivastava J K, Irene E A. Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy. Journal of Vacuum Science & Technology B, 1987, 5(2): 530–537
https://doi.org/10.1116/1.583944
21 Pliskin W A, Esch R P. Refractive index of SiO2 films grown on silicon. Journal of Applied Physics, 1965, 36(6): 2011–2013
https://doi.org/10.1063/1.1714393
22 Sproul A B. Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors. Journal of Applied Physics, 1994, 76(5): 2851–2854
https://doi.org/10.1063/1.357521
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed