Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (1): 60-66   https://doi.org/10.1007/s11708-016-0443-5
  本期目录
Defect passivation on cast-mono crystalline screen-printed cells
Alison WENHAM1(),Lihui SONG2,Malcolm ABBOTT1,Iskra ZAFIROVSKA1,Sisi WANG1,Brett HALLAM1,Catherine CHAN1,Allen BARNETT1,Stuart WENHAM1
1. School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
2. College of Materials & Environmental Engineering, Hangzhou DianZi University, Hangzhou 310018, China
 全文: PDF(382 KB)   HTML
Abstract

Cast-mono crystalline silicon wafers contain crystallographic defects, which can severely impact the electrical performance of solar cells. This paper demonstrates that applying hydrogenation processes at moderate temperatures to finished screen print cells can passivate dislocation clusters within the cast-mono crystalline silicon wafers far better than the hydrogenation received during standard commercial firing conditions. Efficiency enhancements of up to 2% absolute are demonstrated on wafers with high dislocation densities. The impact of illumination to manipulate the charge state of hydrogen during annealing is investigated and found to not be significant on the wafers used in this study. This finding is contrary to a previous study on similar wafers that concluded increased H or H0 from laser illumination was responsible for the further passivation of positively charged dangling bonds within the dislocation clusters.

Key wordssilicon solar cell    dislocation    cast-mono    laser    hydrogen passivation
收稿日期: 2016-08-06      出版日期: 2016-11-16
Corresponding Author(s): Alison WENHAM   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(1): 60-66.
Alison WENHAM,Lihui SONG,Malcolm ABBOTT,Iskra ZAFIROVSKA,Sisi WANG,Brett HALLAM,Catherine CHAN,Allen BARNETT,Stuart WENHAM. Defect passivation on cast-mono crystalline screen-printed cells. Front. Energy, 2017, 11(1): 60-66.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-016-0443-5
https://academic.hep.com.cn/fie/CN/Y2017/V11/I1/60
Sister Laser intensity/ (1018Photons·cm−2·s−1) Hotplate set point/K Target cell temperature/K Actual cell temperature/K
1 (Control) 0 623 573 586
2 6.94 594 573 579
3 11.1 580 573 574
4 15.1 568 573 570
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Takahashi I, Usami N, Kutsukake K, Stokkan G, Morishita K, Nakajima K. Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed. Journal of Crystal Growth, 2010, 312(7): 897–901
https://doi.org/10.1016/j.jcrysgro.2010.01.011
2 Yang K, Schwuttke G H, Ciszek T F. Structural and electrical characterization of crystallographic defects in silicon ribbons. Journal of Crystal Growth, 1980, 50(1): 301–310
https://doi.org/10.1016/0022-0248(80)90252-3
3 Gu X, Yu X, Guo K, Chen L, Wang D, Yang D. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: towards high efficiency and low cost silicon solar cells. Solar Energy Materials and Solar Cells, 2012, 101(2): 95–101
https://doi.org/10.1016/j.solmat.2012.02.024
4 Breitenstein O, Rakotoniaina J P, Al Rifai M H, Werner M. Shunt types in crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12(7): 529–538
https://doi.org/10.1002/pip.544
5 Hanoka J, Bell O. Electron-beam-induced currents in semiconductors. Annual Review of Materials Science, 1981, 11(1): 353–380
https://doi.org/10.1146/annurev.ms.11.080181.002033
6 Sopori B, Zhang Y, Ravindra N M. Silicon device processing in H-ambients: H-diffusion mechanisms and influence on electronic properties. Journal of Electronic Materials, 2001, 30(12): 1616–1627
https://doi.org/10.1007/s11664-001-0181-1
7 Haunschild J, Glatthaar M, Demant M, Nievendick J, Motzko M, Rein S, Weber E R. Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production. Solar Energy Materials & Solar Cells, 2010, 94(12): 2007–2012
8 Sopori B. Silicon solar-cell processing for minimizing the influence of impurities and defects. Journal of Electronic Materials, 2002, 31(10): 972–980
https://doi.org/10.1007/s11664-002-0030-x
14 Sopori B L, Deng X, Benner J P, Rohatgi A, Sana P, Estreicher S K, Park Y K, Robertson M A. Hydrogen in silicon: a discussion of diffusion and passivation mechanisms. In: IEEE 1st World Conference on Photovoltaic Energy, 1994, 2(95):159–169
15 Divigalpitiya W M R, Morrison S R, Vercruysse G, Praet A, Gomes W P. Hydrogen passivation of dislocations in silicon. Solar Energy Materials, 1987, 15(2): 141–151
https://doi.org/10.1016/0165-1633(87)90089-X
16 Dubé C, Hanoka J I. Hydrogen passivation of dislocations in silicon. Applied Physics Letters, 1984, 45(10): 1135–1137
https://doi.org/10.1063/1.95045
17 Weronek K, Weber J, Queisser H J. Hydrogen passivation of the dislocation-related D-band luminescence in silicon. physica status solidi (a), 1993, 137(2): 543–548
https://doi.org/10.1002/pssa.2211370224
18 Benton J L, Doherty C J, Ferris S D, Flamm D L, Kimerling L C, Leamy H J. Hydrogen passivation of point defect in silicon. Applied Physics Letters, 1980, 36(8): 670–671
https://doi.org/10.1063/1.91619
19 Hallam B, Sugianto A, Mai L, Xu G Q, Chan C, Abbott M, Wenham S, Uruena A, Aleman M, Poortmans J. Hydrogen passivation of laser-induced defects for silicon solar cells. In: Proceedings of IEEE 40th Photovoltaic Specialist Conference, 2014
20 Abbott M, Cousins P, Chen F, Cotter J. Laser-induced defects in crystalline silicon solar cells. In: Proceedings of IEEE Photovoltaic Specialist Conference, 2005
21 Tan J, Cuevas A, Macdonald D, Trupke T, Bardos R, Roth K. On the electronic improvement of multi-crystalline silicon via gettering and hydrogenation. Progress in Photovoltaics: Research and Applications, 2008, 16(2): 129–134
https://doi.org/10.1002/pip.775
22 Martinuzzi S, Périchaud I, Warchol F. Hydrogen passivation of defects in multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2003, 80(3): 343–353
https://doi.org/10.1016/j.solmat.2003.08.015
12 Sheoran M, Upadhyaya A, Rohatgi A. Bulk lifetime and efficiency enhancement due to gettering and hydrogenation of defects during cast multicrystalline silicon solar cell fabrication. Solid-State Electronics, 2008, 52(5): 612–617
https://doi.org/10.1016/j.sse.2007.10.001
23 Song L, Wenham A, Wang S, Hamer P, Ahmmed M S, Hallam B, Mai L, Abbott M, Hawkes E R, Chong A M, Wenham S R. Laser enhanced hydrogen passivation of silicon wafers. International Journal of Photoenergy, 2015, 193892
24 Van de Walle C G, Denteneer P J H, Bar-Yam Y, Pantelides S T. Theory of hydrogen diffusion and reactions in crystalline silicon. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(15): 10791–10808
https://doi.org/10.1103/PhysRevB.39.10791
25 Chang K, Chadi D. Hydrogen bonding and diffusion in crystalline silicon. Physical Review B: Condensed Matter and Materials Physics, 1989, 40(17): 11644–11653
https://doi.org/10.1103/PhysRevB.40.11644
26 Herring C, Johnson N M, Van de Walle C G. Energy levels of isolated interstitial hydrogen in silicon. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(12): 125209
https://doi.org/10.1103/PhysRevB.64.125209
27 Johnson N M, Herring C. Hydrogen immobilization in silicon p-n junctions. Physical Review B: Condensed Matter and Materials Physics, 1988, 38(2): 1581–1584
https://doi.org/10.1103/PhysRevB.38.1581
28 Fedders P A. Diffusion of hydrogen in different charge states in realistic models of a-Si:H. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(19): 195308
https://doi.org/10.1103/PhysRevB.66.195308
29 Hamer P, Hallam B, Wenham R, Abbott M. Manipulation of hydrogen charge states for passivation of P-type wafers in photovoltaics. IEEE Journal of Photovoltaics, 2014, 4(5): 1252–1260
https://doi.org/10.1109/JPHOTOV.2014.2339494
30 Sadoh T, Tsukamoto K, Baba A, Bai D, Kenjo A, Tsurushima T, Mori H, Nakashima H. Deep level of iron-hydrogen complex in silicon. Journal of Applied Physics, 1997, 82(8): 3828–3831
https://doi.org/10.1063/1.365746
31 Hallam B J, Hamer P G, Wenham S R, Abbott M A, Sugianto A, Wenham A M, Chan C E, Xu G Q, Kraiem J, Degoulange J, Einhaus R. Advanced bulk defect passivation for silicon solar cells. IEEE Journal of Photovoltaics, 2014, 4(1): 88–95
https://doi.org/10.1109/JPHOTOV.2013.2281732
32 Nakayashiki K, Rohatgi A, Ostapenko S, Tarasov I. Minority-carrier lifetime enhancement in edge-defined film-fed grown Si through rapid thermal processing-assisted reduction of hydrogen-defect dissociation. Journal of Applied Physics, 2005, 97(2): 024504
https://doi.org/10.1063/1.1833577
33 Narasimha S, Rohatgi A, Weeber A W. An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Transactions on Electron Devices, 1999, 46(7): 1363–1370
https://doi.org/10.1109/16.772477
34 del Alamo J, Eguren J, Luque A. Operating limits of Al-alloyed high–low junctions for BSF solar cells. Solid-State Electron Devices, 1981, 24(5): 415–420
https://doi.org/10.1016/0038-1101(81)90038-1
35 Cheek G C, Mertens R P, Van Overstraeten R, Frisson L. Thick-film metallization for solar cell applications. IEEE Transactions on Electron Devices, 1984, 31(5): 602–609
https://doi.org/10.1109/T-ED.1984.21575
36 Hilali M M, Sridharan S, Khadilkar C, Shaikh A, Rohatgi A, Kim S. Effect of glass frit chemistry on the physical and electrical properties of thick-film Ag contacts for silicon solar cells. Journal of Electronic Materials, 2006, 35(11): 2041–2047
https://doi.org/10.1007/s11664-006-0311-x
37 Lennon A, Yao Y, Wenham S. Evolution of metal plating for silicon solar cell metallisation. Progress in Photovoltaics: Research and Applications, 2013, 21(7): 1454–1468
https://doi.org/10.1002/pip.2221
38 Wilking S, Beckh C, Ebert S, Herguth A, Hahn G. Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes. Solar Energy Materials and Solar Cells, 2014, 131(58): 2–8
https://doi.org/10.1016/j.solmat.2014.06.027
39 Wenham A, Hallam B, Song L, Wang S, Abbott M, Chan C, Hamer P, Azmi A, Barnett A, Wenham S R. Efficiency enhancement for screen printed solar cells on Quasi-Mono wafers through advanced hydrogenation. In: Proceedings of the European PVSEC, 2015
41 Hallam B, Tjahjono B, Trupke T, Wenham S. Photoluminescence imaging for determining the spatially resolved implied open circuit voltage of silicon solar cells. Journal of Applied Physics, 2014, 115(4): 044901
https://doi.org/10.1063/1.4862957
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed