Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (2): 399-410   https://doi.org/10.1007/s11708-017-0445-y
  本期目录
不可逆布莱顿循环性能的火用可持续性评估及优化
AHMADI Mohammad H.1(), AHMADI Mohammad-Ali2, ABOUKAZEMPOUR Esmaeil3, GROSU Lavinia4, POURFAYAZ Fathollah1, BIDI Mokhtar5
1. Department of Renewable Energies, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
2. Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz 61963165, Iran
3. Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran 1417466191, Iran
4. University of Paris Ouest Nanterre La Defense, 50 rue Sevres, 92 410 Ville dAvray, France
5. Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran 1417466191, Iran
Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance
Mohammad H. AHMADI1(), Mohammad-Ali AHMADI2, Esmaeil ABOUKAZEMPOUR3, Lavinia GROSU4, Fathollah POURFAYAZ1, Mokhtar BIDI5
1. Department of Renewable Energies, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
2. Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz 61963165, Iran
3. Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran 1417466191, Iran
4. University of Paris Ouest Nanterre La Defense, 50 rue Sevres, 92 410 Ville dAvray, France
5. Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran 1417466191, Iran
 全文: PDF(1805 KB)   HTML
摘要:

由于能源需求和全球变暖,更高效地利用动力循环已成为人类的一种责任。本文对不可逆布莱顿循环开展热力学研究,目标是要优化布莱顿循环的性能。此外,文中推出了多目标优化的四种不同方案,每种方案的效果分别加以评估。在不可逆布莱顿循环的分析中,考虑了输出功率以及熵产、能量、火用输出和火用效率的概念。在第一种方案中,为实现火用输出最大化,应用了生态学函数与生态学性能系数、多目标优化算法(MOEA)。在第二种方案中,通过应用多目标优化算法,包含火用性能准则、生态学性能系数及生态学函数的三种目标函数同时求它们的最大。在第三种方案中,为寻求火用输出、火用性能准则及生态学性能系数的最大化,多目标优化算法被采用。在最后一种方案中,应用多目标优化算法,包括火用性能准则、生态学性能系数及含火用的生态学函数等三种目标函数同时求其最大。经由基于NSGAII方法的多目标进化算法,执行了全部优化策略。最后,为了综观每一种方案的最终结果,三种熟知的决策方法被用。

Abstract

Owing to the energy demands and global warming issue, employing more effective power cycles has become a responsibility. This paper presents a thermodynamical study of an irreversible Brayton cycle with the aim of optimizing the performance of the Brayton cycle. Moreover, four different schemes in the process of multi-objective optimization were suggested, and the outcomes of each scheme are assessed separately. The power output, the concepts of entropy generation, the energy, the exergy output, and the exergy efficiencies for the irreversible Brayton cycle are considered in the analysis. In the first scheme, in order to maximize the exergy output, the ecological function and the ecological coefficient of performance, a multi-objective optimization algorithm (MOEA) is used. In the second scheme, three objective functions including the exergetic performance criteria, the ecological coefficient of performance, and the ecological function are maximized at the same time by employing MOEA. In the third scenario, in order to maximize the exergy output, the exergetic performance criteria and the ecological coefficient of performance, a MOEA is performed. In the last scheme, three objective functions containing the exergetic performance criteria, the ecological coefficient of performance, and the exergy-based ecological function are maximized at the same time by employing multi-objective optimization algorithms. All the strategies are implemented via multi-objective evolutionary algorithms based on the NSGAII method. Finally, to govern the final outcome in each scheme, three well-known decision makers were employed.

Key wordsentropy generation    exergy    Brayton cycle    ecological function    irreversibility
收稿日期: 2016-05-06      出版日期: 2019-07-04
通讯作者: AHMADI Mohammad H.     E-mail: mohammadhosein.ahmadi@gmail.com
Corresponding Author(s): Mohammad H. AHMADI   
 引用本文:   
AHMADI Mohammad H., AHMADI Mohammad-Ali, ABOUKAZEMPOUR Esmaeil, GROSU Lavinia, POURFAYAZ Fathollah, BIDI Mokhtar. 不可逆布莱顿循环性能的火用可持续性评估及优化[J]. Frontiers in Energy, 2019, 13(2): 399-410.
Mohammad H. AHMADI, Mohammad-Ali AHMADI, Esmaeil ABOUKAZEMPOUR, Lavinia GROSU, Fathollah POURFAYAZ, Mokhtar BIDI. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance. Front. Energy, 2019, 13(2): 399-410.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0445-y
https://academic.hep.com.cn/fie/CN/Y2019/V13/I2/399
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Decision making method Decision variables Objectives
hC hE T1/K T3/K x Ex/kW ECF/kW ECOP
TOPSIS 1.000 1.000 301.838 1199.908 5.553 511.919 101.859 1.502
LINMAP 1.000 1.000 301.383 1199.816 6.002 498.685 117.972 1.626
Fuzzy 1.000 1.000 335.300 1199.880 11.990 296.803 175.803 4.434
Tab.1  
Decision making
Method
Objectives Max error/% Average error/%
TOPSIS Ex 1.695 1.100
ECF 9.169 4.956
ECOP 4.914 2.618
LINMAP Ex 6.333 3.311
ECF 25.489 10.991
ECOP 19.565 8.358
Fuzzy Ex 14.627 7.771
ECF 8.307 4.319
ECOP 16.782 10.030
Tab.2  
Fig.9  
Decision making method Decision variables Objectives
hC hE T1/K T3/K x ECOP ECF/kW EPC
TOPSIS 1.000 1.000 349.880 1022.021 12.000 8.307 78.032 10.210
LINMAP 1.000 1.000 349.900 1032.834 12.000 7.962 83.805 9.828
Fuzzy 1.000 1.000 349.910 1124.969 12.000 5.933 130.245 7.581
Tab.3  
Decision making
method
Objectives Max error/% Average error/%
TOPSIS Ex 1.695 1.100
ECF 9.169 4.956
ECOP 4.914 2.618
LINMAP Ex 6.333 3.311
ECF 25.489 10.991
ECOP 19.565 8.358
Fuzzy Ex 14.627 7.771
ECF 8.307 4.319
ECOP 16.782 10.030
Tab.4  
Fig.10  
Decision making method Decision variables Objectives
hC hE T1/K T3/K x ECOP Ex/kW EPC
TOPSIS 1.000 1.000 349.467 1016.419 11.977 8.422 105.418 10.333
LINMAP 1.000 1.000 349.460 1018.815 11.978 8.336 107.448 10.237
Fuzzy 1.000 1.000 341.115 1195.147 11.450 4.415 293.156 5.839
Tab.5  
Decision making
method
Objectives Max error/% Average error/%
TOPSIS ECOP 16.994 10.425
Ex 34.630 21.031
EPC 16.005 9.556
LINMAP ECOP 17.213 10.495
Ex 35.713 21.353
EPC 16.205 9.620
Fuzzy ECOP 9.433 5.424
Ex 6.826 4.183
EPC 7.711 4.501
Tab.6  
Fig.11  
Decision making method Decision variables Objectives
hC hE T1/K T3/K x ECOP EECF/kW EPC
TOPSIS 1.000 1.000 339.033 1020.757 12.000 7.326 112.380 8.970
LINMAP 1.000 1.000 339.119 1026.538 12.000 7.186 116.445 8.819
Fuzzy 1.000 1.000 339.177 1171.013 11.996 4.846 220.405 6.278
Tab.7  
Decision making
Method
Objectives Max error/% Average error/%
TOPSIS ECOP 28.972 14.073
EECF 36.983 16.038
EPC 26.630 13.726
LINMAP ECOP 29.063 13.941
EECF 36.409 15.741
EPC 26.671 13.570
Fuzzy ECOP 14.066 7.638
EECF 16.331 7.000
EPC 12.494 7.493
Tab.8  
cp Specific heats at constant pressure
cv Specific heats at constant volum
ECOP Ecological coefficient of performance
E ˙x Exergy flow
ECF Ecological function
EPC Exergetic performance criteria
EECF Exergy-based ecological function
nex The exergy efficiency
MAW Maximum available work
Q Heat
S ˙ge n Entropy generation rate
T1 Temperature of state point 1
T3 Temperature of state point 3
W ˙ Power
x The pressure ratio
m ˙ Mass flow rate
Subscript
ηC compression efficiency
ηE Expansion efficiency
η Energy efficiency
  
1 A Bejan. Entropy Generation Through Heat and Fluid Flow. New York: Wiley, 1982
2 Y A Cengel, M A Boles. Thermodynamics: an Engineering Approach. 5th ed., New York: McGraw-Hill, 2011
3 L Chen, F Sun. Advances in Finite Time Thermodynamics: Analysis and Optimization.New York: Nova Science Publishers, 2004
4 Z Ma, A Turan. Finite time thermodynamic modeling of an indirectly fired gas turbine cycle. In: 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2010
5 X M Ye. Effect of variable heat capacities on performance of an irreversible Miller heat engine. Frontiers in Energy,  2012,  6(3):280–284
6 S Zheng, G Lin. Optimization of power and efficiency for an irreversible diesel heat engine. Frontiers of Energy and Power Engineering in China, 2010, 4(4): 560–565
https://doi.org/10.1007/s11708-010-0018-9
7 A Dobrovicescu, L Grosu. Optimisation exergo-économique d’une turbine à gaz. Oil & Gas Science and Technology, 2012, 67(4): 661–670
https://doi.org/10.2516/ogst/2012011
8 L Grosu, C Dobre, S Petrescu. Study of a Stirling engine used for domestic micro-cogeneration. International Journal of Energy Research,  2015,  39(9):1280–1294
9 F Angulo-Brown. An ecological optimization criterion for finite-time heat engines. Journal of Applied Physics, 1991, 69(11): 7465–7469
https://doi.org/10.1063/1.347562
10 Z Yan. Comment on “ecological optimization criterion for finite-time heat-engines”. Journal of Applied Physics, 1993, 73(7): 3583
https://doi.org/10.1063/1.354041
11 Y Ust. Performance analysis, optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion. Applied Thermal Engineering, 2009, 29(1): 47–55
https://doi.org/10.1016/j.applthermaleng.2008.01.024
12 Y Ust. Effect of regeneration on the thermo-ecological performance analysis, optimization of irreversible air refrigerators. Heat & Mass Transfer,  2010,  46(4):469–478
13 Y Ust, B Sahin. Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion. International Journal of Refrigeration, 2007, 30(3): 527–534
https://doi.org/10.1016/j.ijrefrig.2006.07.002
14 Y Ust, A V Akkaya, A Safa. Analysis of a vapor compression refrigeration system via exergetic performance coefficient criterion. Journal of the Energy Institute, 2016, 84(84): 66–72
15 Y Ust, B Sahin, O S Sogut. Performance analysis, optimization of an irreversible dual cycle based on an ecological coefficient of performance criterion. Applied Energy, 2005, 82(1): 23–39
https://doi.org/10.1016/j.apenergy.2004.08.005
16 Y Ust, B Sahin, A Kodal. Ecological coefficient of performance ECOP optimization for generalized irreversible Carnot heat engines. Journal of the Energy Institute, 2005, 78(3): 145–151
https://doi.org/10.1179/014426005X50779
17 Y Ust, A Safa, B Sahin. Ecological performance analysis of an endoreversible regenerative Brayton heat-engine. Applied Energy, 2005, 80(3): 247–260
https://doi.org/10.1016/j.apenergy.2004.04.009
18 Y Ust, B Sahin, A Kodal. Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion. Applied Energy,  2007,  84(11):1079–1091
19 Y Ust, B Sahin, T Yilmaz. Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: exergetic performance coefficient EPC. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 2007, 221(4): 447–456
https://doi.org/10.1243/09576509JPE379
20 Y Ust, B Sahin, A Kodal, I H Akcay. Ecological coefficient of performance analysis, optimization of an irreversible regenerative-Brayton heat engine. Applied Energy, 2006, 83(6): 558–572
https://doi.org/10.1016/j.apenergy.2005.05.009
21 Y Ust, S S Sogut, B Sahin. The effects of inter cooling, regeneration on thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. Journal of Physics D Applied Physics,  2006,  39(21):4713–4721
22 Y Ust, O S Sogut, B Sahin, A Durmayaz. Ecological coefficient of performance ECOP optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs. Journal of the Energy Institute, 2006, 79(1): 47–52
https://doi.org/10.1179/174602206X90959
23 Y Ust, B Sahin, A Kodal. Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. International Journal of Thermal Sciences, 2006, 45(1): 94–101
https://doi.org/10.1016/j.ijthermalsci.2005.04.005
24 Açıkkalp E. Models for optimum thermo-ecological criteria of actual thermal cycles. Thermal Science,  2012,  17(17):915–930
25 E Açıkkalp , H Yamık . Limits and optimization of power input or output of actual thermal cycles. Entropy,  2013,  15(8):3219–3248
26 T Özyer, M Zhang, R Alhajj. Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation. Applied Intelligence,  2011,  35(1):110–122
27 B Ombuki, B J Ross, F Hanshar. Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence, 2006, 24(1): 17–30
https://doi.org/10.1007/s10489-006-6926-z
28 I Blecic, A Cecchini, G Trunfio. A decision support tool coupling a causal model and a multi-objective genetic algorithm. Applied Intelligence,  2007,  26(2):125–137
29 D A Van Veldhuizen, G B Lamont. Multi objective evolutionary algorithms analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125–147
https://doi.org/10.1162/106365600568158
30 A Konak, D W Coit, A E Smith. Multi-objective optimization using genetic algorithms: a tutorial. Reliability Engineering & System Safety, 2006, 91(9): 992–1007
https://doi.org/10.1016/j.ress.2005.11.018
31 M H Ahmadi, H Hosseinzade, H Sayyaadi, A H Mohammadi, F Kimiaghalam. Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy,  2013,  60(4): 313–322
32 M H Ahmadi, H Sayyaadi, A H Mohammadi, M A Barranco-Jimenez. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Conversion & Management,  2013,  73(5): 370–380
33 M H Ahmadi, H Sayyaadi, S Dehghani, H Hosseinzade. Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power. Energy Conversion & Management,  2013,  75(75):282–291
34 M H Ahmadi, S Dehghani, A H Mohammadi, M Feidt, M A Barranco-Jimenez. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Conversion & Management,  2013,  75(11):635–642
35 M H Ahmadi, M A Ahmadi, R Bayat, M Ashouri, M Feidt. Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm. Energy Conversion & Management,  2015,  91:315–322
36 A Lazzaretto, A Toffolo. Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design. Energy, 2004, 29(8): 1139–1157
https://doi.org/10.1016/j.energy.2004.02.022
37 S Toghyani, A Kasaeian, M H Ahmadi. Multi-objective optimization of Stirling engine using non-ideal adiabatic method. Energy Conversion & Management,  2014,  80(5):54–62
38 A Toffolo, A Lazzaretto. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design. Energy, 2002, 27(6): 549–567
https://doi.org/10.1016/S0360-5442(02)00009-9
39 M H Ahmadi, A H Mohammadi, S Dehghani. Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis. Energy Conversion and Management, 2013, 76(12): 561–570
https://doi.org/10.1016/j.enconman.2013.07.082
40 M H Ahmadi, M A Ahmadi, A H Mohammadi, M Feidt, S M Pourkiaei. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Conversion and Management, 2014, 82(6): 351–360
https://doi.org/10.1016/j.enconman.2014.03.033
41 M H Ahmadi, M A Ahmadi, A H Mohammadi, M Mehrpooya, M Feidt. Thermodynamic optimization of Stirling heat pump based on multiple criteria. Energy Conversion and Management, 2014, 80(80): 319–328
https://doi.org/10.1016/j.enconman.2014.01.031
42 M H Ahmadi, A H Mohammadi, S Dehghani, M A Barranco-Jimenez. Multi-objective thermodynamic-based optimization of output power of solar dish-Stirling engine by implementing an evolutionary algorithm. Energy Conversion and Management, 2013, 75: 438–445
https://doi.org/10.1016/j.enconman.2013.06.030
43 M H Ahmadi, A H Mohammadi, S M Pourkiaei. Optimisation of the thermodynamic performance of the Stirling engine. International Journal of Ambient Energy, 2016, 37(2): 149–161
https://doi.org/10.1080/01430750.2014.907211
44 H Sayyaadi, M H Ahmadi, S Dehghani. Optimal design of a solar-driven heat engine based on thermal and ecological criteria. Journal of Energy Engineering,  2014,  141(3)
45 R Soltani, P M Keleshtery, M Vahdati, M H Khoshgoftarmanesh, M A Rosen, M Amidpour. Multi-objective optimization of a solar-hybrid cogeneration cycle: application to CGAM problem. Energy Conversion & Management,  2014,  81(2):60–71
46 M H Ahmadi, M A Ahmadi, M Mehrpooya, H Hosseinzade, M Feidt. Thermodynamic and thermoeconomic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy Conversion & Management,  2014,  88:1051–1059
47 M H Ahmadi, M A Ahmadi. Thermodynamic analysis and optimization of an irreversible ericsson cryogenic refrigerator cycle. Energy Conversion and Management, 2015, 89(89): 147–155
https://doi.org/10.1016/j.enconman.2014.09.064
48 M H Ahmadi, M A Ahmadi, M Mehrpooya, M Sameti. Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump. Energy Conversion and Management, 2015, 90: 175–183
https://doi.org/10.1016/j.enconman.2014.11.021
49 M H Ahmadi, M A Ahmadi, M Feidt. Performance optimization of a solar-driven multi-step irreversible brayton cycle based on a multi-objective genetic algorithm. Oil & Gas Science and Technology, 2014, 71(1): 1-11
50 M H Ahmadi, M A Ahmadi. Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII. Renewable & Sustainable Energy Reviews, 2016, 60: 784–794
https://doi.org/10.1016/j.rser.2015.12.181
51 M H Ahmadi, M A Ahmadi, A Mellit, F Pourfayaz, M Feidt. Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. International Journal of Electrical Power & Energy Systems, 2016, 78: 88–95
https://doi.org/10.1016/j.ijepes.2015.11.042
52 M H Ahmadi, M A Ahmadi, F Pourfayaz, M Bidi. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy Conversion and Management, 2016, 110: 260–267
https://doi.org/10.1016/j.enconman.2015.12.028
53 M H Ahmadi, M A Ahmadi, M Mehrpooya, M Feidt, M A Rosen. Optimal design of an Otto cycle based on thermal criteria. Mechanics & Industry, 2016, 17(1): 111
https://doi.org/10.1051/meca/2015049
54 M H Ahmadi, M A Ahmadi, S A Sadatsakkak. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renewable & Sustainable Energy Reviews, 2015, 51: 1055–1070
https://doi.org/10.1016/j.rser.2015.07.006
55 M H Ahmadi, M A Ahmadi, F Pourfayaz. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. European Physical Journal Plus, 2015, 130(9): 190–203
https://doi.org/10.1140/epjp/i2015-15190-5
56 S A Sadatsakkak, M H Ahmadi, R Bayat, S M Pourkiaei, M Feidt. Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 2015, 93: 31– 39
https://doi.org/10.1016/j.enconman.2014.12.088
57 S A Sadatsakkak, M H Ahmadi, M A Ahmadi. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Conversion and Management, 2015, 94: 124–129
https://doi.org/10.1016/j.enconman.2015.01.040
58 M H Ahmadi, M A Ahmadi, A Shafaei, M Ashouri, S Toghyani. Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II. International Journal of Low-Carbon Technologies,  2016, 11: 317–324
59 M H Ahmadi, M A Ahmadi, M Feidt. Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration. Mechanics & Industry, 2015, 16(2): 207
https://doi.org/10.1051/meca/2014080
60 E Abu-Nada, I Al-Hinti, A Al-Sarkhi, B Akash. Thermodynamic modeling of a spark-ignition engine: effect of temperature dependent specific heats. International Communications in Heat and Mass Transfer, 2006, 33(10): 1264–1272
https://doi.org/10.1016/j.icheatmasstransfer.2006.06.014
61 J Li, L Chen, F Sun. Optimal ecological performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law. Termotehnica Thermal Engineering, 2009, 13(2): 61–68
62 L Chen, J Zhou, F Sun, C Wu. Ecological optimization for generalized irreversible Carnot engines. Applied Energy, 2004, 77(3): 327–338
https://doi.org/10.1016/S0306-2619(03)00138-7
63 D Xia, L Chen, F Sun. Universal ecological performance for endoreversible heat engine cycles. International Journal of Ambient Energy,  2006,  27(1):15–20
64 G Özel, E Açıkkalp, H Yamık. Methods used for evaluating irreversible Brayton cycle and comparing them. International Journal of Sustainable Aviation,  2015,  1(3): 288–298
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed