Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 131-148   https://doi.org/10.1007/s11708-017-0446-x
  本期目录
光伏系统用新型混合模糊神-经网络和风力发电机组用RBFNSM的并网运行模式智能混合发电系统
REZVANI Alireza1(), ESMAEILY Ali2, ETAATI Hasan3, MOHAMMADINODOUSHAN Mohammad4
1. Department of Electrical Engineering, Save Branch, Islamic Azad University, Saveh 3919715179, Iran
2. Deparment of Electrical Engineering, Karaj Branch,Islamic Azad University, Karaj 3148635731, Iran
3. Iran Water an Power Resources Development Company (IWPCO), Iran
4. Deparment of Electrical Engineering, Science and Research Branch,Islamic Azad University,Tehran 1477893855, Iran
Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode
Alireza REZVANI1(), Ali ESMAEILY2, Hasan ETAATI3, Mohammad MOHAMMADINODOUSHAN4
1. Department of Electrical Engineering, Saveh Branch, Islamic Azad University, Saveh 3919715179, Iran Water and Power Resources Development Company (IWPCO), Iran
2. Department of Electrical Engineering, Karaj Branch, Islamic Azad University, Karaj 3148635731, Iran
3. Iran Water and Power Resources Development Company (IWPCO), Iran
4. Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
 全文: PDF(5532 KB)   HTML
摘要:

光伏发电作为一种可再生能源,其发展速度越来越快。然而,由于依赖于天气条件,光伏系统的缺点是其间歇性。因此,风力发电被认为有助于光伏发电系统稳定可靠的负荷输出,从而提高整个发电系统在并网模式下的动态性能。本文提出了一种基于光伏和风力发电机组的智能混合发电系统的拓扑结构。为了获取最大功率,在光伏系统中采用了混合模糊神经最大功率点跟踪(MPPT)方法。与传统方法相比,混合模糊神经方法的平均跟踪效率提高了约2个百分点。风力机的俯仰角由径向基函数网络滑模(RBFNSM)控制。仿真结果显示了不同的条件下实际功率值与所提出方法的比较。所得结果验证了本文提出方法的有效性和优越性,该方法具有鲁棒性、快速响应和良好的性能。利用Matlab/Simulink建立了三相并网智能混合系统的详细数学模型和控制方法。

Abstract

Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

Key wordsphotovoltaic    wind turbine    hybrid system    fuzzy logic controller    genetic algorithm    RBFNSM
收稿日期: 2016-05-06      出版日期: 2019-03-20
通讯作者: REZVANI Alireza     E-mail: alireza.rezvani.saveh@gmail.com
Corresponding Author(s): Alireza REZVANI   
 引用本文:   
REZVANI Alireza, ESMAEILY Ali, ETAATI Hasan, MOHAMMADINODOUSHAN Mohammad. 光伏系统用新型混合模糊神-经网络和风力发电机组用RBFNSM的并网运行模式智能混合发电系统[J]. Frontiers in Energy, 2019, 13(1): 131-148.
Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode. Front. Energy, 2019, 13(1): 131-148.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0446-x
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/131
Fig.1  
IMP ( Rated current)/AVMP( Rated voltage)/VPmax(Rated power)/WVoc ( Open circuit voltage)Isc ( Short circuit current)Np (number of parallel cells)Ns (number of series cells)
4.9418.659022.325.24136
Tab.1  
Number of design variablePopulation sizeCrossover constant/%Mutation rate/%Maximum generations
120801020
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Rule number?Ppv?Vpv?ref
1PPP
2PNN
3NPN
4NNP
1PPP
Tab.3  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
AlgorithmTracking efficiency (avg)Response time (avg)/sOscillation around MPP (avg)/W
Hybrid fuzzy-neural99.120.102.52
Fuzzy logic97.350.177.31
P&O95.140.2829.12
Tab.4  
Time/sReal value/ WHybrid fuzzy-neural/WFuzzy logic/WP&O/W
0–41600159815551533
4–83530352734703455
8–111600159815551533
11–1444004398434844331
Tab.5  
Fig.11  
Fig.12  
AlgorithmTracking efficiency ( avg)Response time (avg)/sOscillation around MPP (avg)/W
Hybrid fuzzy-neural99.450.142.12
Fuzzy logic97.620.197.21
P&O94.840.2726.12
Tab.6  
Time/sReal value/WHybrid fuzzy-neural/WFuzzy logic/WP&O/W
0–44298429742614246
8–141952194919041887
Tab.7  
Fig.13  
Controller typeWind speed/(m·s–1)Power coefficient (Cp)Pitch angle/(°)Average power/kW
RBFNSM120.475–0.0959.2
PI120.461–0.6658.1
Tab.8  
1 ARezvani, MGandomkar, MIzadbakhsh, AAhmadi. Environmental/economic scheduling of a micro-grid with renewable energy resources. Journal of Cleaner Production, 2015, 87: 216–226
https://doi.org/10.1016/j.jclepro.2014.09.088
2 MIzadbakhsh, MGandomkar, ARezvani, AAhmadi. Short-term resource scheduling of a renewable energy based micro grid. Renewable Energy, 2015, 75: 598–606
https://doi.org/10.1016/j.renene.2014.10.043
3 ARezvani, MIzadbakhsh, and MGandomkar. Microgrid dynamic responses enhancement using artificial neural network-genetic algorithm for photovoltaic system and fuzzy controller for high wind speeds. International Journal of Numerical Modeling, Electronic Networks, Devices and Fields, 2015, 40(40): C7-415–C7-416
4 ARezvani, MIzadbakhsh, MGandomkar. Enhancement of microgrid dynamic responses under fault conditions using artificial neural network for fast changes of photovoltaic radiation and FLC for wind turbine. Energy Systems, 2015, 6(4): 551–584
https://doi.org/10.1007/s12667-015-0156-6
5 SVafaei, MGandomkar, ARezvani, MIzadbakhsh. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances. Frontiers in energy, 2015, 9(3): 322–334
6 SMorimoto, HNakayama, MSanada, YTakeda. Sensorless output maximization control for variable-speed wind generation system using IPMSG. IEEE Transactions on Industry Applications, 2005, 41(1): 60–67
https://doi.org/10.1109/TIA.2004.841159
7 C MMing, C HChen. Intelligent control of agrid-connected wind-photovoltaic hybrid power systems. Electrical Power and Energy Systems, 2014, 55(2): 554–561
8 M MAlgazar, HAl-Monier, H AEL-halim, M E E KSalem. Maximum power point tracking using fuzzy logic control. International Journal of Electrical Power & Energy Systems, 2012, 39(1): 21–28
https://doi.org/10.1016/j.ijepes.2011.12.006
9 CLiu, BWu, RCheung. Advanced algorithm for MPPT control of photovoltaic systems. In: Proceeding of the Canadian Solar Buildings Conference. Montreal, Canada, 2004
10 A KRai, N DKaushika, BSingh, NAgarwal. Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells, 2011, 95(2): 773–778
https://doi.org/10.1016/j.solmat.2010.10.022
11 AChaouachi, R MKamel, KNagasaka. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system. Solar Energy, 2010, 84(12): 2219–2229
https://doi.org/10.1016/j.solener.2010.08.004
12 R KKharb, S LShimi, SChatterji, M FAnsari. Modeling of solar PV module and maximum power point tracking using ANFIS. Renewable and Sustainable Energy, 2014, 33(5): 602–612
https://doi.org/10.1016/j.rser.2014.02.014
13 AAfsin, AKulaksiz. Training data optimization for ANNs using genetic algorithms to enhance MPPT efficiency of a stand-alone PV system. Turkish Journal of Electrical Engineering and Computer Sciences, 2012, 20(2): 241–254
14 CBen Salah, MOuali. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems. Electric Power Systems Research, 2011, 81(1): 43–50
https://doi.org/10.1016/j.epsr.2010.07.005
15 ARezvani, MIzadbakhsh, MGandomkar. Enhancement of hybrid dynamic performance using ANFIS for fast varying solar radiation and fuzzy logic controller in high speeds wind. Journal of Electrical Systems, 2015, 11(1): 11–26
16 R MVincheh, AKargar, G AMarkadeh. A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arabian Journal for Science and Engineering, 2014, 39(6): 4715–4725
https://doi.org/10.1007/s13369-014-1056-0
17 MIzadbakhsh, ARezvani, MGandomkar. Improvement of microgrid dynamic performance under fault circumstances using ANFIS for fast varying solar radiation and fuzzy logic controller for wind system. Archives of Electrical Engineering, 2014, 63(4): 551–578
https://doi.org/10.2478/aee-2014-0038
18 SHadji, FKrim, J PGaubert. Development of an algorithm of maximum power point tracking for photovoltaic systems using genetic algorithms. In: 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA). 2011, 43–46
19 VBakić, MPezo, ŽanaStevanović, M Živković, BGrubor. Dynamical simulation of PV/Wind hybrid energy conversion system. Energy, 2012, 45(1): 324–328
20 SSamia, GAhmed. Modeling and simulation of hybrid systems PV/Wind/Battery connected to the grid. International Conference of Automatic Control, Nantou, Taiwan, China, 2013
21 N HSamrat, N BAhmad, I AChoudhury, Z BTaha. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia. Scientific World Journal, 2014, 2014(38): 278–279
22 BBhandari, S RPoudel, K TLee, S HAhn. Mathematical modeling of hybrid renewable energy system: a review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing-green Technology, 2014, 1(2): 157–173
https://doi.org/10.1007/s40684-014-0021-4
23 JAhmed, ZSalam. An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy, 2015, 150: 97–108
https://doi.org/10.1016/j.apenergy.2015.04.006
24 P CChen, P YChen, YLiu, J HChen, Y FLuo. A comparative study on maximum power point tracking techniques for photovoltaic generation systems operating under fast changing environments. Solar Energy, 2015, 119: 261–276
https://doi.org/10.1016/j.solener.2015.07.006
25 W MLin, C MHong. A new Elman neural network-based control algorithm for adjustable-pitch variable speed wind energy conversion systems. IEEE Transactions on Power Electronics, 2011, 26(2): 473–481
https://doi.org/10.1109/TPEL.2010.2085454
26 S CLin, Y YChen. RBF network based sliding mode control. IEEE International Conference on Systems, 1994, 2(2): 1957–1961
27 FBlaabjerg, RTeodorescu, MLiserre, A VTimbus. Overview of control and grid synchronization for distributed power generation systems. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1398–1409
https://doi.org/10.1109/TIE.2006.881997
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed