Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (2): 155-167   https://doi.org/10.1007/s11708-017-0469-3
  本期目录
Influence of increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative wind turbine and photovoltaic system
Przemyslaw JANIK1(), Grzegorz KOSOBUDZKI2(), Harald SCHWARZ3
1. Brandenburg University of Technology, 01968 Cottbus-Senftenberg, Germany
2. Department of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
3. Department for Energy Distribution and High Voltage Engineering, Brandenburg University of Technology, 01968 Cottbus-Senftenberg, Germany
 全文: PDF(1479 KB)   HTML
Abstract

This paper presents the selected power quality (PQ) indicia of a wind generator and a photovoltaic installation considered to be the representative of medium voltage and low voltage distribution grids. The analysis of measured values suggests that the decrease in PQ is a case of specific combination of distributed generation, grid parameters and load behaviour. Modern generators have a limited impact on PQ. On the other hand, fluctuations in power generation are regarded as an emerging PQ indicator. The growing number of distributed renewable installations causes stochastic, variable, and hardly predictable power flows in the distribution grid. The nature of fluctuations in wind and solar generation is different. In both cases, new indexes for the quantification of fluctuations are needed and are yet not standardised. Proper assessment of these fluctuations enables definition of useful fluctuation limits and rules for optimal storage system integration.

Key wordspower quality    harmonics    sags    photovoltaic(PV) system    doubly feed induction generator (DFIG)    inverters
收稿日期: 2017-01-06      出版日期: 2017-06-01
Corresponding Author(s): Przemyslaw JANIK,Grzegorz KOSOBUDZKI   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(2): 155-167.
Przemyslaw JANIK, Grzegorz KOSOBUDZKI, Harald SCHWARZ. Influence of increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative wind turbine and photovoltaic system. Front. Energy, 2017, 11(2): 155-167.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0469-3
https://academic.hep.com.cn/fie/CN/Y2017/V11/I2/155
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Tab.1  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Tab.2  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
1 Parliament E. Directive 2009/28/EC of the European Parliament and the Council on the promotion of use of energy from renewable sources, 2009
2 By EU. Directive 2001/77/EC of the European Parliament and the Council on the promotion of electricity produced from renewable energy sources in the internal electricity marked, 2001
3 Foxpenner P. Smart Power: Climate Change, the Smart Grid and the Future of Electric Utilities. Washington: Island Press, 2010
4 Bollen M H, Hassan  F. Integration of Distributed Generation in the Power System. John Chichester: Willey-IEEE Press, 2011
5 CIGRE. Impact of increasing contribution of dispersed generation on the power system. CIGRE Study Committee No 37, Final Report, 1998
6 IEEE Standard 1547. IEEE Standard for interconnecting distributed resources with electrical power systems. Institute of Electrical & Electronics Engineers Inc, 2003
7 BSI. Standard EN50438–2013. Requirements for the connection of micro-generators in parallel with public low-voltage distribution networks, 2013
8 Baggini A. Handbook of Power Quality. Hoboke: John Willey & Sons, 2008
9 Caramia P, Carpinelli  G, Verde P . Power Quality Indices in Liberalized Markets. Hoboke: John Willey & Sons, 2009
10 Janik P. Photovoltaic Power Generation Assessment Based on Advanced Signal Processing and Optimisation Techniques. Wroclaw: Publishing house of Wroclaw University of Science and Technology  Wroclaw, 2014
11 CENELEC EN 50160–2010. Voltage characteristics of electricity supplied by public electricity networks
12 Standard IEC61000-2-2–2002. Electromagnetic compatibility (EMC)–Part 2-2: environment-compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems
13 Standard IEC61000-2-4–2002. Electromagnetic compatibility (EMC)–Part 2-4: environment-compatibility levels in industrial plants for low-frequency conducted disturbances
14 Standard IEC61000-2-12–2002. Electromagnetic compatibility (EMC)–Part 2-12: environment-compatibility levels for low-frequency conducted disturbances and signaling in public medium-voltage power supply systems
15 Standard IEC61000-4-7–2010. Electromagnetic compatibility (EMC)–Part 4-7: testing and measurement techniques-general guide on harmonics and inter harmonics measurements and instrumentation, for power supply systems and equipment connected thereto
16 Standard IEC 61000-4-15–2010. Electromagnetic compatibility (EMC)–Part 4-15: testing and measurement techniques-Flickermeter-Functional and design specifications
17 Standard IEC61000-4-30–2008. Electromagnetic compatibility (EMC)–Part 4-30: testing and measurement techniques–Power quality measurement methods
18 The windpower.  2016–10–28, 
19 Standard IEC61000-3-2–2014. Electromagnetic compatibility (EMC)–Part 3-2: limits for harmonic current emissions (equipment input current≤ 16 A per phase)
20 Standard IEC61000-3-3–2013. Electromagnetic compatibility (EMC) – Part 3-3: limits – limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current≤16 A per phase and not subject to conditional connection
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed