Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (3): 286-298   https://doi.org/10.1007/s11708-017-0477-3
  本期目录
Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells
Gang WU()
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
 全文: PDF(705 KB)   HTML
Abstract

To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

Key wordsoxygen reduction    fuel cells    cathode    nonprecious metal catalysts    carbon nanocomposites
收稿日期: 2017-03-19      出版日期: 2017-09-07
Corresponding Author(s): Gang WU   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(3): 286-298.
Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Front. Energy, 2017, 11(3): 286-298.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0477-3
https://academic.hep.com.cn/fie/CN/Y2017/V11/I3/286
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 CheG, Lakshmi B B, FisherE R , MartinC R. Carbon nanotubule membranes for electrochemical energy storage and production.Nature, 1998, 393(6683): 346–349
https://doi.org/10.1038/30694
2 YangZ, ZhangJ, Kintner-MeyerM C , LuX, ChoiD, LemmonJ P, Liu J. Electrochemical energy storage for green grid.Chemical Reviews, 2011, 111(5): 3577–361
https://doi.org/10.1021/cr100290v
3 RabisA, Rodriguez P, SchmidtT J . Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges.ACS Catalysis, 2012, 2(5): 864–890
https://doi.org/10.1021/cs3000864
4 DebeM K. Electrocatalyst approaches and challenges for automotive fuel cells.Nature, 2012, 486(7401): 43–51
https://doi.org/10.1038/nature11115
5 ShaoM, ChangQ, DodeletJ P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction.Chemical Reviews, 2016, 116(6): 3594–3657
https://doi.org/10.1021/acs.chemrev.5b00462
6 JaouenF, Proietti E, LefevreM , ChenitzR, Dodelet J P, WuG , ChungH T, Johnston C M, ZelenayP . Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells.Energy & Environmental Science, 2011, 4(1): 114–130
https://doi.org/10.1039/C0EE00011F
7 ShaoY, ParkS, XiaoJ, Zhang J G, WangY , LiuJ. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective.ACS Catalysis, 2012, 2(5): 844–857
https://doi.org/10.1021/cs300036v
8 BlackR, LeeJ H, AdamsB, Mims C A, NazarL F . The role of catalysts and peroxide oxidation in lithium-oxygen batteries.Angewandte Chemie International Edition, 2013, 52(1): 392–396
https://doi.org/10.1002/anie.201205354
9 WuG, MoreK L, JohnstonC M , ZelenayP. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.Science, 2011, 332(6028): 443–447
https://doi.org/10.1126/science.1200832
10 SuntivichJ, MayK J, GasteigerH A , GoodenoughJ B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.Science, 2011, 334(6061): 1383–1385
https://doi.org/10.1126/science.1212858
11 LefèvreM, Proietti E, JaouenF , DodeletJ P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells.Science, 2009, 324(5923): 71–74
https://doi.org/10.1126/science.1170051
12 GongK, DuF, XiaZ, Durstock M, DaiL . Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.Science, 2009, 323(5915): 760–764
https://doi.org/10.1126/science.1168049
13 BashyamR, Zelenay P. A class of non-precious metal composite catalysts for fuel cells.Nature, 2006, 443(7107): 63–66
https://doi.org/10.1038/nature05118
14 WuG, Santandreu A, KelloggW , GuptaS, OgokeO, ZhangH, Wang H L, DaiL . Carbon Nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition.Nano Energy, 2016, 29: 83–110
https://doi.org/10.1016/j.nanoen.2015.12.032
15 RabisA, Rodriguez P, SchmidtT J . Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges.ACS Catalysis, 2012, 2(5): 864–890
https://doi.org/10.1021/cs3000864
16 OsgoodH, Devaguptapu S V, XuH , ChoJ P, WuG. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media.Nano Today, 2016, 11(5): 601–625
https://doi.org/10.1016/j.nantod.2016.09.001
17 GuptaS, QiaoL, ZhaoS, Xu H, LinY , DevaguptapuS V, WangX, SwihartM T, Wu G. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution.Advanced Energy Materials, 2016, 6(22): 1601198
https://doi.org/10.1002/aenm.201601198
18 GuptaS, Kellogg W, XuH , LiuX, ChoJ, WuG. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media.Chemistry, an Asian Journal, 2016, 11(1): 10–21
https://doi.org/10.1002/asia.201500640
19 ChenC F, KingG, DickersonR M , PapinP A, GuptaS, KelloggW R, Wu G. Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst.Nano Energy, 2015, 13: 423–432
https://doi.org/10.1016/j.nanoen.2015.03.005
20 WangX, KeY, PanH, Ma K, XiaoQ , YinD, WuG, SwihartM T. Cu-deficient plasmonic Cu2-xS nanoplate electrocatalysts for oxygen reduction.ACS Catalysis, 2015, 5(4): 2534–2540
https://doi.org/10.1021/acscatal.5b00115
21 JaouenF, Proietti E, LefèvreM , ChenitzR, Dodelet J P, WuG , ChungH T, Johnston C M, ZelenayP . Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells.Energy & Environmental Science, 2011, 4(1): 114–130
https://doi.org/10.1039/C0EE00011F
22 WuG, NelsonM A, MackN H, Ma S G, SekharP , GarzonF H, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst.Chemical Communications (Cambridge), 2010, 46(40): 7489–7491
https://doi.org/10.1039/c0cc03088k
23 LiQ, XuP, GaoW, Ma S G, ZhangG Q , CaoR G, ChoJ, WangH L, Wu G. Graphene/graphene tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries.Advanced Materials, 2014, 26(9): 1378–1386
https://doi.org/10.1002/adma.201304218
24 LiQ, CaoR, ChoJ, Wu G. Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage.Advanced Energy Materials, 2014, 4(6): 1301415
https://doi.org/10.1002/aenm.201301415
25 WuG, ChungH T, NelsonM, Artyushkova K, MoreK L , JohnstonC M, Zelenay P. Graphene-enriched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media.ECS Transactions, 2011, 4(1): 1709–1717
26 WuG, MoreK L, XuP, WangH L, FerrandonM, Kropf A J, MyersD J , MaS, Johnston C M, ZelenayP . A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability.Chemical Communications (Cambridge), 2013, 49(32): 3291–3293
https://doi.org/10.1039/c3cc39121c
27 LiQ, WuG, CullenD A, More K L, MackN H , ChungH T, Zelenay P. Phosphate-tolerant oxygen reduction catalysts.ACS Catalysis, 2014, 4(9): 3193–3200
https://doi.org/10.1021/cs500807v
28 HeQ G, WuG, LiuK, Khene S, LiQ , MugadzaT, DeunfE, NyokongT, Chen S W. Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media.ChemElectroChem, 2014, 1(9): 1508–1515
https://doi.org/10.1002/celc.201402054
29 HeQ, LiQ, KheneS, Ren X, López-Suárez F E, Lozano-CastellóD, Bueno-LópezA , WuG. High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells.Journal of Physical Chemistry, 2013, 117(17): 8697–8707
30 WuG, MackN H, GaoW, Ma S, ZhongR , HanJ, Baldwin J K, ZelenayP . Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O 2 battery cathodes.ACS Nano, 2012, 6(11): 9764–9776
https://doi.org/10.1021/nn303275d
31 LiQ, PanH, HigginsD, Cao R, ZhangG , LvH, WuK, ChoJ, Wu G. Metal-organic framework derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts.Small, 2015, 11(12): 1443–1452
https://doi.org/10.1002/smll.201402069
32 LiQ, WangT, HavasD, Zhang H, XuP , HanJ, ChoJ, WuG. High-performance direct methanol fuel cells with precious-metal-free cathode.Advancement of Science, 2016, 3(11): 1600140
33 WangX, LiQ, PanH, Lin Y, KeY , ShengH, Swihart M T, WuG . Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction.Nanoscale, 2015, 7(47): 20290–20298
https://doi.org/10.1039/C5NR05864C
34 ParvezK, YangS, HernandezY, Winter A, TurchaninA , FengX, Müllen K. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction.ACS Nano, 2012, 6(11): 9541–9550
https://doi.org/10.1021/nn302674k
35 QuL, LiuY, BaekJ B, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.ACS Nano, 2010, 4(3): 1321–1326
https://doi.org/10.1021/nn901850u
36 ByonH R, Suntivich J, Shao-HornY . Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid.Chemistry of Materials, 2011, 23(15): 3421–3428
https://doi.org/10.1021/cm2000649
37 LaiL, PottsJ R, ZhanD, Wang L, PohC K , TangC, GongH, ShenZ, Lin J, RuoffR S . Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction.Energy & Environmental Science, 2012, 5(7): 7936–7942
https://doi.org/10.1039/c2ee21802j
38 LiY, WangJ, LiX, GengD, BanisM N, Li R, SunX . Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries.Electrochemistry Communications, 2012, 18(0): 12–15
https://doi.org/10.1016/j.elecom.2012.01.023
39 LiY G, ZhouW, WangH, Xie L, LiangY , WeiF, IdroboJ C, PennycookS J , DaiH. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes.Nature Nanotechnology, 2012, 7(6): 394–400
https://doi.org/10.1038/nnano.2012.72
40 XiaoJ, MeiD, LiX, XuW, WangD, Graff G L, BennettW D , NieZ, SarafL V, AksayI A, Liu J, ZhangJ G . Hierarchically porous graphene as a lithium–air battery electrode.Nano Letters, 2011, 11(11): 5071–5078
https://doi.org/10.1021/nl203332e
41 ShuiJ L, KaranN K, BalasubramanianM , LiS Y, LiuD J. Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction.Journal of the American Chemical Society, 2012, 134(40): 16654–16661
https://doi.org/10.1021/ja3042993
42 PylypenkoS, Mukherjee S, OlsonT S , AtanassovP. Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles.Electrochimica Acta, 2008, 53(27): 7875–7883
https://doi.org/10.1016/j.electacta.2008.05.047
43 NiwaH, HoribaK, HaradaY, Oshima M, IkedaT , TerakuraK, OzakiJ, MiyataS. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells.Journal of Power Sources, 2009, 187(1): 93–97
https://doi.org/10.1016/j.jpowsour.2008.10.064
44 MamtaniK, OzkanU S. Heteroatom-doped carbon nanostructures as oxygen reduction reaction catalysts in acidic media: an overview.Catalysis Letters, 2015, 145(1): 436–450
https://doi.org/10.1007/s10562-014-1434-y
45 Wiggins-CamachoJ D, Stevenson K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes.Journal of Physical Chemistry, 2011, 115(40): 20002–20010
46 JaouenF, Goellner V, LefèvreM , HerranzJ, Proietti E, DodeletJ . Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe N C catalysts.Electrochimica Acta, 2013, 87: 619–628
https://doi.org/10.1016/j.electacta.2012.09.057
47 NallathambiV, Leonard N, KothandaramanR , BartonS C. Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts.Electrochemical and Solid-State Letters, 2011, 14(6): B55–B58
https://doi.org/10.1149/1.3566065
48 WuJ, YangZ, LiX, SunQ, JinC, Strasser P, YangR . Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction.Journal of Materials Chemistry, 2013, 1(34): 9889–9896
https://doi.org/10.1039/c3ta11849e
49 RamaswamyN, TylusU, JiaQ, Mukerjee S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry.Journal of the American Chemical Society, 2013, 135(41): 15443–15449
https://doi.org/10.1021/ja405149m
50 JaouenF, Herranz J, LefevreM , DodeletJ P, KrammU I, HerrmannI, Bogdanoff P, MaruyamaJ , NagaokaT, Garsuch A, DahnJ R , OlsonT, Pylypenko S, AtanassovP , UstinovE A. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction.ACS Applied Materials & Interfaces, 2009, 1(8): 1623–1639
https://doi.org/10.1021/am900219g
51 LiangJ, JiaoY, JaroniecM, Qiao S Z. Sulfur and nitrogen dual‐doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance.Angewandte Chemie International Edition, 2012, 51(46): 11496–11500
https://doi.org/10.1002/anie.201206720
52 JiaoY, ZhengY, JaroniecM, Qiao S Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance.Journal of the American Chemical Society, 2014, 136(11): 4394–4403
https://doi.org/10.1021/ja500432h
53 GanesanS, Leonard N, BartonS C . Impact of transition metal on nitrogen retention and activity of iron–nitrogen–carbon oxygen reduction catalysts.Physical Chemistry Chemical Physics, 2014, 16(10): 4576–4585
https://doi.org/10.1039/c3cp54751e
54 GongY, FeiH, ZouX, Zhou W, YangS , YeG, LiuZ, PengZ, Lou J, VajtaiR , YakobsonB I, TourJ M, AjayanP M. Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction.Chemistry of Materials, 2015, 27(4): 1181–1186
https://doi.org/10.1021/cm5037502
55 StricklandK, MinerE, JiaQ, Tylus U, RamaswamyN , LiangW, Sougrati M T, JaouenF , MukerjeeS. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.Nature Communications, 2015, 6: 7343
https://doi.org/10.1038/ncomms8343
56 JiaQ, Ramaswamy N, HafizH , TylusU, Strickland K, WuG , BarbielliniB, BansilA, HolbyE F, Zelenay P, MukerjeeS . Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity.ACS Nano, 2015, 9(12): 12496–12505
https://doi.org/10.1021/acsnano.5b05984
57 GaoW, HavasD, GuptaS, Pan Q, HeN , ZhangH, WangH L, WuG. Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts?Carbon, 2016, 102: 346–356
https://doi.org/10.1016/j.carbon.2016.02.054
58 WuG, Johnston C M, MackN H , ArtyushkovaK, Ferrandon M, NelsonM , Lezama-PachecoJ S, Conradson S D, MoreK L , MyersD J, Zelenay P. Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells.Journal of Chemistry Materials, 2011, 21(30): 11392–11405
https://doi.org/10.1039/c0jm03613g
59 ShengH, WeiM, D’AloiaA , WuG. Heteroatom polymer-derived 3D high-surface-area and mesoporous graphene sheet-like carbon for supercapacitors.ACS Applied Materials & Interfaces, 2016, 8(44): 30212–30224
https://doi.org/10.1021/acsami.6b10099
60 WuG, Artyushkova K, FerrandonM , KropfA J, MyersD, ZelenayP. Performance durability of polyaniline-derived non-precious cathode catalysts.ECS Transactions, 2009, 25(1): 1299–1311
61 WuG, Zelenay P. Nanostructured non-precious metal catalysts for oxygen reduction reaction.Accounts of Chemical Research, 2013, 46(8): 1878–1889
https://doi.org/10.1021/ar400011z
62 GuptaS, ZhaoS, OgokeO, Lin Y, XuH , WuG. Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts via tuning nitrogen/carbon precursors.ChemSusChem, 2017, 10(4): 774–785
https://doi.org/10.1002/cssc.201601397
63 WuG, NelsonM A, MackN H, Ma S, SekharP , GarzonF H, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst.Chemical Communications, 2010, 46(40): 7489–7491
https://doi.org/10.1039/c0cc03088k
64 LiQ, WuG, CullenD A, More K L, MackN H , ChungH, Zelenay P. Phosphate-tolerant oxygen reduction catalysts.ACS Catalysis, 2014, 4(9): 3193–3200
https://doi.org/10.1021/cs500807v
65 WuG, MoreK L, XuP, WangH L, FerrandonM, Kropf A J, MyersD J , MaS, Johnston C M, ZelenayP . Carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability.Chemical Communications (Cambridge), 2013, 49(32): 3291–3293
https://doi.org/10.1039/c3cc39121c
66 ChungH T, WuG, LiQ, Zelenay P. Role of two carbon phases in oxygen reduction reaction on the Co-PPy-C catalyst.International Journal of Hydrogen Energy, 2014, 39(28): 15887–15893
https://doi.org/10.1016/j.ijhydene.2014.05.137
67 FerrandonM, KropfA J, MyersD J, Artyushkova K, KrammU , BogdanoffP, WuG, JohnstonC M , ZelenayP. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst.Journal of Physical Chemistry, 2012, 116(30): 16001–16013
68 FerrandonM, WangX, KropfA J, Myers D J, WuG , JohnstonC M, Zelenay P. Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts.Electrochimica Acta, 2013, 110: 282–291
https://doi.org/10.1016/j.electacta.2013.03.183
69 WengL T, Bertrand P, LalandeG , GuayD, Dodelet J P. Surface characterization by time-of-flight SIMS of a catalyst for oxygen electroreduction: pyrolyzed cobalt phthalocyanine-on-carbon black.Applied Surface Science, 1995, 84(1): 9–21
https://doi.org/10.1016/0169-4332(94)00470-6
70 WuG, NelsonM, MaS, MengH, CuiG, Shen P K. Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction.Carbon, 2011, 49(12): 3972–3982
https://doi.org/10.1016/j.carbon.2011.05.036
71 LinZ, ChuH, ShenY, Wei L, LiuH , LiY. Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance.Chemical Communications, 2009, 46(46): 7167–7169
https://doi.org/10.1039/b917235a
72 LeeS U, Belosludov R V, MizusekiH , KawazoeY. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes.Small, 2009, 5(15): 1769–1775
https://doi.org/10.1002/smll.200801938
73 MatterP H, ZhangL, OzkanU S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96
74 ZhangH, OsgoodH, XieX, Shao Y, WuG . Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks.Nano Energy, 2017, 31: 331–350
https://doi.org/10.1016/j.nanoen.2016.11.033
75 BarkholtzH M, LiuD J. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks.Materials Horizons, 2017, 4(1): 20–37
https://doi.org/10.1039/C6MH00344C
76 WangX J, ZhangH, LinH, Gupta S, WangC , TaoZ, FuH, WangT, Zheng J, WuG , LiX. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid.Nano Energy, 2016, 25: 110–119
https://doi.org/10.1016/j.nanoen.2016.04.042
77 LiuX, ParkM, KimM G, Gupta S, WuG , ChoJ. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries.Angewandte Chemie International Edition, 2015, 54(33): 9654–9658
https://doi.org/10.1002/anie.201503612
78 LiuX, LiuW, KoM, ParkM, KimM G, Oh P, ChaeS , ParkS, Casimir A, WuG , ChoJ. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts.Advanced Functional Materials, 2015, 25(36): 5799–5808
https://doi.org/10.1002/adfm.201502217
79 TyminskaN, WuG, DupuisM. Water oxidation on oxygen-deficient barium titanate: a first principles study.Journal of Physical Chemistry, 2017, 121(15): 8378–8389
80 StamenkovicV, MunB S, MayrhoferK J , RossP N, Markovic N M, RossmeislJ , GreeleyJ, Nørskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure.Angewandte Chemie, 2006, 118(18): 2963–2967
https://doi.org/10.1002/ange.200504386
81 StamenkovicV R, FowlerB, MunB S, Wang G, RossP N , LucasC A, Marković N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability.Science, 2007, 315(5811): 493–497
https://doi.org/10.1126/science.1135941
82 ZhangJ, SasakiK, SutterE, Adzic R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.Science, 2007, 315(5809): 220–222
https://doi.org/10.1126/science.1134569
83 ZhangL, XiaZ. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells.Journal of Physical Chemistry, 2011, 115(22): 11170–11176
84 YangL, JiangS, ZhaoY, Zhu L, ChenS , WangX, WuQ, MaJ, MaY, HuZ. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction.Angewandte Chemie, 2011, 123(31): 7270–7273
https://doi.org/10.1002/ange.201101287
85 HolbyE F, WuG, ZelenayP, Taylor C D. Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first principles modeling.Journal of Physical Chemistry, 2014, 118(26): 14388–14393
86 HammerB, Norskov J. Why gold is the noblest of all the metals.Nature, 1995, 376(6537): 238–240
https://doi.org/10.1038/376238a0
87 NørskovJ K, Bligaard T, RossmeislJ , ChristensenC H. Towards the computational design of solid catalysts.Nature Chemistry, 2009, 1(1): 37–46
https://doi.org/10.1038/nchem.121
88 ZhangL, NiuJ, DaiL, Xia Z. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells.Langmuir, 2012, 28(19): 7542–7550
https://doi.org/10.1021/la2043262
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed