Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 64-70   https://doi.org/10.1007/s11708-017-0481-7
  本期目录
基于Aspen Plus的城市生活垃圾热解气化过程模拟分析
邓娜1(), 李东炎2, 张强3, 张啊文2, 蔡荣昌2, 张碧婷2
1. 天津大学环境科学与工程学院,中国天津 300350
2. 中低温热能高效利用教育部重点实验室,中国天津 300350
3. 天津大学建筑设计规划研究总院,中国天津 300072
Simulation analysis of municipal solid waste pyrolysis and gasification based on Aspen plus
Na DENG1(), Dongyan LI2, Qiang ZHANG3, Awen ZHANG2, Rongchang CAI2, Biting ZHANG2
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; MOE Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin 300350, China
2. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
3. Tianjin University Research Institute of Architectural Design & Urban Planning, Tianjin 300072, China
 全文: PDF(464 KB)   HTML
摘要:

为更好地预测和分析城市生活垃圾(MSW)在上吸式固定床中的热解气化过程,本文基于Gibbs自由能最小化法,采用Aspen plus软件进行数值模拟。模型中,RYield模块与RGibbs模块相结合用于热解段模拟,而RGibbs模块则单独用于气化段模拟。所述模型主要用于预测和分析不同气化温度、气化剂比例和气化剂种类条件下,热解气化工艺的目标特性参数如热解气化气组分、低热值(LHV)以及碳转化率。预测结果表明,采用上述模型得到的模拟结果与实验结果具有良好的吻合性。最佳的气化温度在750℃左右。水蒸汽为气化剂时,最佳的气化剂比例在0.4左右。采用烟气与水蒸气的混合物作为气化剂,是4种常用气化剂中最具有经济和可循环利用前景的一种。

Abstract

To predict and analyze the municipal solid waste (MSW) pyrolysis and gasification process in an up-draft fixed bed more veritably and appropriately, numerical modeling based on Gibbs energy minimization was executed using the Aspen plus software. The RYield module was combined with the RGibbs module to describe the pyrolysis section, while the RGibbs module was used for the gasification section individually. The proposed model was used to forecast and analyze the target performance parameters including syngas composition, lower heating value (LHV) and carbon conversion rate under different conditions of the gasification temperatures, and ratios and types of gasifying agents. The results indicate that there is a good agreement between the experimental data and the simulated data obtained using this model. The predicted optimum gasification temperature is approximately 750°C, and the best ratio of water vapor as gasifying agent is around 0.4. The mixture of flue gas and water vapor has an economical and recycled prospect among four commonly used gasifying agents.

Key wordsmunicipal solid waste (MSW)    pyrolysis    gasification    Aspen plus    simulation
收稿日期: 2016-07-20      出版日期: 2019-03-20
通讯作者: 邓娜     E-mail: denglouna@tju.edu.cn
Corresponding Author(s): Na DENG   
 引用本文:   
邓娜, 李东炎, 张强, 张啊文, 蔡荣昌, 张碧婷. 基于Aspen Plus的城市生活垃圾热解气化过程模拟分析[J]. Frontiers in Energy, 2019, 13(1): 64-70.
Na DENG, Dongyan LI, Qiang ZHANG, Awen ZHANG, Rongchang CAI, Biting ZHANG. Simulation analysis of municipal solid waste pyrolysis and gasification based on Aspen plus. Front. Energy, 2019, 13(1): 64-70.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0481-7
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/64
Fig.1  
Fig.2  
Moisture content (wt)/%Proximate analysis (wt)/%Ultimate
analysis (wt)/%
VdFCdAdCdHdOdNdSd
2459.81228426.220.82.60.4
Tab.1  
ItemsParameters
Moisture content (wt)/%24
Feed rate/(kg?h-1)1.32
Stream and reactor pressure/atm1
Pyrolysis temperature/°C550
Gasification temperature/°C550-1000
(interval 50)
Final productsSyngas and slag
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Types of
gasifying agent
Characteristics of syngas
CO/%H2/%CO2/%H2O/%N2 /%CH4 /%LHV/(kcal·m-3)Heat/kJ
Water vapor35.1357.721.922.900.791.422674.5425591.3
CO244.0747.643.023.011.140.962645.5817544.21
Water vapor and CO239.2753.072.402.980.951.202660.5221164.85
Water vapor and flue gas29.4851.721.352.1813.991.142324.5516418.76
Tab.3  
1 Q LZhang, Y SWu, LDor, W HYang, WBlasiak. A thermodynamic analysis of solid waste gasification in the Plasma Gasification Melting process. Applied Energy, 2013, 112(4): 405–413
https://doi.org/10.1016/j.apenergy.2013.03.054
2 Meng A, Chen S, Zhou H, Long Y, Zhang Y, Li Q. Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel, 2015, 157(3): 1–8
https://doi.org/10.1016/j.fuel.2015.04.056
3 SShabbar, IJanajreh. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method. Energy Conversion and Management, 2013, 65(1): 755–763
https://doi.org/10.1016/j.enconman.2012.02.032
4 Y HZhao, HWen, Z HXu. Conceptual design and simulation study of a co-gasification technology. Energy Conversion and Management, 2006, 47(11-12): 1416–1428
5 H XZheng, NKaliyan, R VMorey. Aspen plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants. Biomass and Bioenergy, 2010, 56(56): 197–210
6 HJin. Process simulation research on high-temperature gasification of biomass with steam. Dissertation for the Master Degree. Harbin: Harbin Institute of Technology, 2013 (in Chinese)
7 JZheng. Experimental study on MSW fluidized-bed gasification and the optimization of prediction model. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2009 (in Chinese)
8 CChen. Experimental study and process simulation on MSW pyrolysis and gasification in fixed bed. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2011 (in Chinese)
9 SBegum, M GRasul, DAkbar. A numerical investigation of municipal solid waste gasification using aspen plus. Procedia Engineering, 2014, 90: 710–717
https://doi.org/10.1016/j.proeng.2014.11.800
10 M BNikoo, NMahinpey. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 2008, 32(12): 1245–1254
https://doi.org/10.1016/j.biombioe.2008.02.020
11 L HShen, YGao, JXiao. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass and Bioenergy, 2008, 32(2): 120–127
https://doi.org/10.1016/j.biombioe.2007.08.002
12 CChen, Y QJin, J HYan, YChi. Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 2013, 103: 58–63
https://doi.org/10.1016/j.fuel.2011.06.075
13 S YLuo. Research on municipal solid waste shredder and effect of particle size on pyrolysis & gasification performance. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2010 (in Chinese)
14 M YHe, BXiao, S MLiu, X JGuo, S YLuo, Z LXu, YFeng, Z QHu. Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. International Journal of Hydrogen Energy, 2009, 34(5): 21742183
15 LSun. Biomass Pyrolysis and Gasification Principles and Techniques. Beijing: Chemical Industry Press, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed