Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (3): 383-400   https://doi.org/10.1007/s11708-017-0485-3
  本期目录
High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage
Xiaoqiang SHAN1, Fenghua GUO1, Wenqian XU2, Xiaowei TENG1()
1. Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
2. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
 全文: PDF(1290 KB)   HTML
Abstract

Developing electrodes with high specific energy by using inexpensive manganese oxides is of great importance for aqueous electrochemical energy storage (EES) using non-Li charge carriers such as Na-or K-ions. However, the energy density of aqueous EES devices is generally limited by their narrow thermodynamic potential window (~1.23 V). In this paper, the synthesis of high purity layered Mn5O8 nanoparticles through solid state thermal treatment of Mn3O4 spinel nanoparticles, resulting in a chemical formula of [Mn2+2 ][Mn4+3 O82−], evidenced by Rietveld refinement of synchrotron-based X-ray diffraction, has been reported. The electro-kinetic analyses obtained from cyclic voltammetry measurements in half-cells have demonstrated that Mn5O8 electrode has a large overpotential (~ 0.6 V) towards gas evolution reactions, resulting in a stable potential window of 2.5 V in an aqueous electrolyte in half-cell measurements. Symmetric full-cells fabricated using Mn5O8 electrodes can be operated within a stable 3.0 V potential window for 5000 galvanostatic cycles, exhibiting a stable electrode capacity of about 103 mAh/g at a C-rate of 95 with nearly 100% coulombic efficiency and 96% energy efficiency.

Key wordsmanganese oxides Mn5O8    high voltage    aqueous Na-ion storage
收稿日期: 2017-03-15      出版日期: 2017-09-07
Corresponding Author(s): Xiaowei TENG   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(3): 383-400.
Xiaoqiang SHAN, Fenghua GUO, Wenqian XU, Xiaowei TENG. High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy, 2017, 11(3): 383-400.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0485-3
https://academic.hep.com.cn/fie/CN/Y2017/V11/I3/383
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Temperature/°C Rwp/% Mn 3O4/% a-Mn2O3/% Mn 5O8/% a-MnO2/% Oxygen (wt)/%
Room Temp 6.24 100 27.95
100 7.22 100 27.95
200 6.64 19.4 80.6 31.02
300 8.44 3.4 96.6 31.63
400 8.03 9.5 89.0 1.5 31.47
500 9.96 14.0 81.2 5.0 31.47
600 12.06 100 30.38
700 9.28 100 30.38
  
Atom Type x y z Frac Mult Uiso
Mn1 Mn+4 0 0 0.50000 0.6966 2 0.01000
Mn2 Mn+4 0 0.26004 0 0.9926 4 0.00355
Mn3 Mn+2 0.72106 0 0.63831 0.6675 4 0.02006
O1 O-2 0.11024 0.24828 0.41234 1.0000 8 0.19676
O2 O-2 0.08889 0 0.88643 1.0000 4 0.01000
O3 O-2 0.62763 0 0.92170 1.0000 4 0.02208
Space group: C 1 2/m 1
a=10.399 Å, b=5.729 Å, c=4.876 Å, a=90°, b=109.6° , g=90°
size: 0.015 mm V=273.628 Å3
  
1 Chu S, Cui  Y, Liu N . The path towards sustainable energy. Nature Materials, 2016, 16(1): 16–22
https://doi.org/10.1038/nmat4834
2 Grey C P, Tarascon  J M. Sustainability and in situ monitoring in battery development. Nature Materials, 2016, 16(1): 45–56
https://doi.org/10.1038/nmat4777
3 Kim S W, Seo  D H, Ma  X, Ceder G ,  Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721
https://doi.org/10.1002/aenm.201200026
4 Ma X, Chen  H, Ceder G . Electrochemical properties of monoclinic NaMnO2. Journal of the Electrochemical Society, 2011, 158(12): A1307–A1312
https://doi.org/10.1149/2.035112jes
5 Sauvage F, Laffont  L, Tarascon J M ,  Baudrin E . Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorganic Chemistry, 2007, 46(8): 3289–3294
https://doi.org/10.1021/ic0700250
6 Whitacre J F, Tevar  A, Sharma S . Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications, 2010, 12(3): 463–466
https://doi.org/10.1016/j.elecom.2010.01.020
7 Suo L M, Borodin  O, Gao T ,  Olguin M ,  Ho J, Fan  X L, Luo  C, Wang C S ,  Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350(6263): 938–943
https://doi.org/10.1126/science.aab1595
8 Xu K, Wang  C S. Batteries: widening voltage windows. Nature Energy, 2016, 1: 16161
9 Shan X, Charles  D S, Lei  Y, Qiao R ,  Wang G, Yang  W, Feygenson M ,  Su D, Teng  X. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7: 13370
https://doi.org/10.1038/ncomms13370
10 Toby B H, Von Dreele  R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 2013, 46(2): 544–549
https://doi.org/10.1107/S0021889813003531
11 Oswald H R, Feitknecht  W, Wampetich M J . Crystal data of Mn5O8 and Cd2Mn3O8. Nature, 1965, 207(4992): 72
https://doi.org/10.1038/207072a0
12 Gao T, Norby  P, Krumeich F ,  Okamoto H ,  Nesper R ,  Fjellvag H . Synthesis and properties of layered-structured Mn5O8 nanorods. Journal of Physical Chemistry C, 2010, 114(2): 922–928
https://doi.org/10.1021/jp9097606
13 Yeager M P, Du  W, Wang Q ,  Deskins N A ,  Sullivan M ,  Bishop B ,  Su D, Xu  W, Senanayake S D ,  Si R, Hanson  J, Teng X . Pseudocapacitive hausmannite nanoparticles with (101) facets: synthesis, characterization, and charge-transfer mechanism. ChemSusChem, 2013, 6(10): 1983–1992
https://doi.org/10.1002/cssc.201300027
14 Dhaouadi H, Ghodbane  O, Hosni F ,  Touati F . Nanoparticles: synthesis, characterization, and dielectric properties. ISRN Spectroscopy, 2012, 67(4): 1152–1153
15 Augustyn V, Come  J, Lowe M A ,  Kim J W ,  Taberna P L ,  Tolbert S H ,  Abruña H D ,  Simon P ,  Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12(6): 518–522
https://doi.org/10.1038/nmat3601
16 Jung S-K, Kim  H, Cho M G ,  Cho S-P ,  Lee B, Kim  H, Park Y-U ,  Hong J, Park  K-Y, Yoon G ,  Seong W M ,  Cho Y, Oh  M H, Kim  H, Gwon H ,  HwangI, Hyeon  T, Yoon W-S ,  Kang K. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy,2017, 2, 16208
17 Lindström H, Södergren  S, Solbrand A ,  Rensmo H ,  Hjelm J ,  Hagfeldt A ,  Lindquist S E . Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. Journal of Physical Chemistry B, 1997, 101(39): 7717–7722
https://doi.org/10.1021/jp970490q
18 Kang B, Ceder  G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458(7235): 190–193
https://doi.org/10.1038/nature07853
19 Yu X W, Manthiram  A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chemistry of Materials, 2016, 28(3): 896–905
https://doi.org/10.1021/acs.chemmater.5b04588
20 Zheng J M, Yan  P F, Kan  W H, Wang  C M, Manthiram  A. A spinel-integrated P2-type layered composite: high-rate cathode for sodium-ion batteries. Journal of the Electrochemical Society, 2016, 163(3): A584–A591
https://doi.org/10.1149/2.0041605jes
21 Burke A. The present and projected performance and cost of double-layer and pseudo-capacitive ultracapacitors for hybrid vehicle applications. In: 2005 IEEE Vehicle Power and Propulsion Conference Chicago, 2005, 356–366
22 Nagasubramanian G, Jungst  R G, Doughty  D H. Impedance, power, energy, and pulse performance characteristics of small commercial Li-ion cells. Journal of Power Sources, 1999, 83(1–2): 193–203
https://doi.org/10.1016/S0378-7753(99)00296-7
23 Li Z, Young  D, Xiang K ,  Carter W C ,  Chiang Y M . Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Advanced Energy Materials, 2013, 3(3): 290–294
https://doi.org/10.1002/aenm.201200598
24 Chen Z, Augustyn  V, Jia X L ,  Xiao Q F ,  Dunn B, Lu  Y F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano, 2012, 6(5): 4319–4327
https://doi.org/10.1021/nn300920e
25 Wang X L, Li  G, Chen Z ,  Augustyn V ,  Ma X M ,  Wang G, Dunn  B, Lu Y F . High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Advanced Energy Materials, 2011, 1(6): 1089–1093
https://doi.org/10.1002/aenm.201100332
26 Nesbitt H W, Banerjee  D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 1998, 83(3-4): 305–315
https://doi.org/10.2138/am-1998-3-414
27 Zhuang Z, Sheng  W, Yan Y . Synthesis of monodispere Au@Co3O4core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Advanced Materials, 2014, 26(23): 3950–3955
https://doi.org/10.1002/adma.201400336
28 Jeong D, Jin  K, Jerng S E ,  Seo H, Kim  D, Nahm S H ,  Kim S H ,  Nam K T . Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH. ACS Catalysis, 2015, 5(8): 4624–4628
https://doi.org/10.1021/acscatal.5b01269
29 Takashima T, Hashimoto  K, Nakamura R . Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. Journal of the American Chemical Society, 2012, 134(3): 1519–1527
https://doi.org/10.1021/ja206511w
30 Takashima T, Hashimoto  K, Nakamura R . Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. Journal of the American Chemical Society, 2012, 134(44): 18153–18156
https://doi.org/10.1021/ja306499n
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed