Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (3): 334-364   https://doi.org/10.1007/s11708-017-0490-6
  本期目录
Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer
Jun HUANG1, Zhe LI2, Jianbo ZHANG2()
1. Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
2. Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China; Beijing Co-innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
 全文: PDF(1363 KB)   HTML
Abstract

Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

Key wordspolymer electrolyte fuel cell    ultra-thin catalyst layer    electrostatic interactions    characterization and modeling    structure-property-performance relation    water management
收稿日期: 2017-04-05      出版日期: 2017-09-07
Corresponding Author(s): Jianbo ZHANG   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(3): 334-364.
Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer. Front. Energy, 2017, 11(3): 334-364.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0490-6
https://academic.hep.com.cn/fie/CN/Y2017/V11/I3/334
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Source Ragg/nm dion/nm ?ion,agg ?void,agg
Broka, 1997 [75] 1000–5000E 0A - 0A
Perry, 1998 [96] 100C 0A - 0A
Jaouen, 2002 [76] 500A 0–50A 0.3A 0A
Siegel, 2003 [79] 3000E 0A 0 0 A
Lin, 2004 [97] 100A 10A 0.393A 0 A
Wang, 2004 [90] 100A 10A 0.3A 0 A
Yin, 2005 [80] 500C - 0.3C 0.3C
Sun, 2005 [77] 1000C 80C 0.5C 0 A
Rao, 20060 [98] 1000–100A 5–50A 0.1–0.5A 0 A
Secanell, 2007 [82] 250–1000A 0-80A 0.5C 0 A
Rao,2007 [84] 100C - - 0 A
Harvey, 2008 [99] 1000C 80A 0.5C 0 A
Kamarajugadda, 2008 [78] 50–1000A 0–100A 0.2-0.5A 0 A
Secanell, 2008 [81] 1000C 80C 0.35A 0 A
Das, 2008 [100] 2500A 0A 0.4A 0 A
Ma, 2009 [101] 120E - - -
Yoon, 2011 [102] 100A 10 - -
Jomori, 2012 [103] 120F 100F - 0 A
Khajeh-Hosseini-Dalasm, 2012 [83] 5–1000A 0–80A 0.3–0.45A 0 A
Dobson, 2012 [104] 250F 25F 0.2–0.3F 0 A
Epting, 2012 [88] 188E 10A - 0 A
Suzuki, 2013 [65] 20–300F 0.9–54F - 0 A
Cetinbas, 2013 [89] 1000A 100A 0.4A 0 A
Cetinbas, 2014 [105] 1000A 80A 0.5A 0 A
Moore,2014 [106] 100A 7A 0.17C 0 A
Tab.1  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
1 S Litster, G F Mclean. PEM fuel cell electrodes. Journal of Power Sources, 2004, 130(1–2): 61–76
https://doi.org/10.1016/j.jpowsour.2003.12.055
2 A Z Weber, J Newman. Modelling transport in polymer-electrolyte fuel cells. Chemical Reviews, 2004, 104(10): 4679–4726
https://doi.org/10.1021/cr020729l
3 M H Eikerling, K Malek, Q Wang. Catalyst Layer Modelling: Structure, Properties and Performance, PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008: 381–446
4 M K Debe. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
https://doi.org/10.1038/nature11115
5 M K Debe. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. Journal of the Electrochemical Society, 2013, 160(6): F522–F534
https://doi.org/10.1149/2.049306jes
6 M Eikerling, A Kulikovsky. Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation. Boca Raton: CRC Press, 2014
7 A Z Weber, R L Borup, R M Darling, P K Das, T J Dursch, W Gu, D Harvey, A Kusoglu, S Litster, M M Mench, R Mukundan, J P Owejan, J G Pharoah, M Secanell, I V Zenyuk. A critical review of modelling transport phenomena in polymer-electrolyte fuel cells. Journal of the Electrochemical Society, 2014, 161(12): F1254–F1299
https://doi.org/10.1149/2.0751412jes
8 S Holdcroft. Fuel cell catalyst layer: a polymer science perspective. Chemistry of Materials, 2014, 26(1): 381–393
https://doi.org/10.1021/cm401445h
9 A Kongkanand, M F Mathias. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. Journal of Physical Chemistry Letters, 2016, 7(7): 1127–1137
https://doi.org/10.1021/acs.jpclett.6b00216
10 N Zamel. The catalyst layer and its dimensionality — a look into its ingredients and how to characterize their effects. Journal of Power Sources, 2016, 309: 141–159
https://doi.org/10.1016/j.jpowsour.2016.01.091
11 M Uchida, Y C Park, K Kakinuma, H Yano, D A Tryk, T Kamino, H Uchida, M Watanabe. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Physical Chemistry Chemical Physics, 2013, 15(27): 11236–11247
https://doi.org/10.1039/c3cp51801a
12 Y C Park, H Tokiwa, K Kakinuma, M Watanabe, M Uchida. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. Journal of Power Sources, 2016, 315: 179–191
https://doi.org/10.1016/j.jpowsour.2016.02.091
13 A J Bard, G Inzelt, F Scholz. Electrochemical Dictionary. London: Springer, 2008, 286
14 A J Bard, G Inzelt, F Scholz. Electrochemical Dictionary. London: Springer, 2008, 523
15 M L Perry, T F Fuller. A historical perspective of fuel cell technology in the 20th century. Journal of the Electrochemical Society, 2002, 149(7): S59–S67
https://doi.org/10.1149/1.1488651
16 F W Ostwald. Scientific electrochemistry of today and technical electrochemistr of tomorrow. Z. fürElektrotechnik und Elektrochemie, 1894, 1: 122–125
17 Office of Energy Efficiency and Renewable Energy. Fuel cell technologies office multi-year research, development, and demonstration plan. 2016, http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22
18 L Mond, C Langer. A new form of gas battery. Proceedings of the Royal Society of London, 46:296–304
19 I Taitelbaum, J Tobler. StudienüberBrennstoffketten. ZeitschriftFürElektrochemie Und AngewandtePhysikalische Chemie, 1910, 16(9): 286–300
20 S M Rezaei Niya, M Hoorfar. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique – a review. Journal of Power Sources, 2013, 240(240): 281–293
https://doi.org/10.1016/j.jpowsour.2013.04.011
21 I E L Stephens, A S Bondarenko, U Grønbjerg, J Rossmeisl, I Chorkendorff. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science, 2012, 5(5): 6744–6762
https://doi.org/10.1039/c2ee03590a
22 C F Schoenbein. On the voltaic polarization of certain solid and fluid substances. Philosophical Magazine, 1838, 14(85): 43–45
23 W R Grove. On voltaic series and the combination of gases by platinum. Philosophical Magazine, 1839, 14(86): 127–130
24 W R Grove. On a gaseous voltaic battery. Journal of The Franklin Institute-engineering and Applied Mathematics, 1843, 35(4): 277–280
https://doi.org/10.1016/S0016-0032(43)91516-9
25 J W T Grubb. Fuel cell. U.S. Patent 2, 913, 511. 1959-11-17
26 W T Grubb, L W Niedrach. Batteries with solid ion-exchange membrane electrolytes II. Low-temperature hydrogen-oxygen fuel cells. Journal of the Electrochemical Society, 1960, 107(2): 131–135
https://doi.org/10.1149/1.2427622
27 L W Niedrach, H R Alford. A new high-performance fuel cell employing conducting-porous-teflon electrodes and liquid electrolytes. Journal of the Electrochemical Society, 1965, 112(2): 117–124
https://doi.org/10.1149/1.2423479
28 A J Appleby, E B Yeager. Solid polymer electrolyte fuel cells (SPEFCs). Energy, 1986, 11(1–2): 137–152
29 R F Waters. Fuel cell electrode and process for its manufacture: U.S. Patent 3, 405, 007. 1968–10–8
30 H G Petrow, R J Allen. Catalytic platinum metal particles on a substrate and method of preparing the catalyst. U.S. Patent 3, 992, 331. 1976–11–16
31 V M Jalan, C L Bushnell. Method for producing highly dispersed catalytic platinum. U.S. Patent 4, 136, 059. 1979–1–23
32 M George, F Kemp. Sequential catalyzation of fuel cell supported platinum catalyst. U.S. Patent 3, 857, 737. 1974–12–31
33 C R Martin, T A Rhoades, J A Ferguson. Dissolution of perfluorinated ion-containing polymers. Analytical Chemistry, 1982, 54(9): 1639–1641
https://doi.org/10.1021/ac00246a040
34 I D Raistrick. Modified gas diffusion electrode for proton exchange membrane fuel cells. Proceedings of the symposium on diaphragms, separation, and ion-exchange membranes. Ponnington (NJ): Electrochemical Society. 1986: 6–7
35 M S Wilson, S Gottesfeld. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry, 1992, 22(1): 1–7
https://doi.org/10.1007/BF01093004
36 M S Wilson, S Gottesfeld. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1992, 139(2): L28–L30
https://doi.org/10.1149/1.2069277
37 S S Kocha. Principles of MEA preparation. Handbook of Fuel Cells. New Jersey: Wiley 2010
38 Gore W.L. and Associates, Inc. PRIMEA MEAs for Transportation, 2003
39 M K Debe, A K Schmoeckel, G D Vernstrom, R Atanasoski. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. Journal of Power Sources, 2006, 161(2): 1002–1011
https://doi.org/10.1016/j.jpowsour.2006.05.033
40 Fuel Cell System Cost – 2015, DOE Hydrogen and Fuel Cells Program Record. 2015
41 M Lee, M Uchida, H Yano, D A Tryk, H Uchida, M Watanabe. New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions. Electrochimica Acta, 2010, 55(28): 8504–8512
https://doi.org/10.1016/j.electacta.2010.07.071
42 R L Borup, J Meyers, B Pivovar, Y S Kim, R Mukundan, N Garland, D Myers, M Wilson, F Garzon, D Wood, P Zelenay, K More, K Stroh, T Zawodzinski, J Boncella, J E McGrath, M Inaba, K Miyatake, M Hori, K Ota, Z Ogumi, S Miyata, A Nishikata, Z Siroma, Y Uchimoto, K Yasuda, K Kimijima, N Iwashita. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
https://doi.org/10.1021/cr050182l
43 T Jahnke, G Futter, A Latz, T Malkow, G Papakonstantinou, G Tsotridis, P Schott, M Gérard, M Quinaud, M Quiroga, A A Franco, K Malek, F Calle-Vallejo, R Ferreira de Morais, T Kerber, P Sautet, D Loffreda, S Strahl, M Serra, P Polverino, C Pianese, M Mayur, W G Bessler, C Kompis. Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale. Journal of Power Sources, 2016, 304: 207–233
https://doi.org/10.1016/j.jpowsour.2015.11.041
44 A Strong, C Thornberry, S Beattie, R Chen, S R Coles. Depositing catalyst layers in polymer electrolyte membrane fuel cells: a review. Journal of Fuel Cell Science and Technology, 2015, 12(6): 064001
https://doi.org/10.1115/1.4031961
45 K A Mauritz, R B Moore. State of Understanding of Nafion. Chemical Reviews, 2004, 104(10): 4535–4586
https://doi.org/10.1021/cr0207123
46 J Wee, K Lee, S H Kim. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. Journal of Power Sources, 2007, 165(2): 667–677
https://doi.org/10.1016/j.jpowsour.2006.12.051
47 T Soboleva, X Zhao, K Malek, Z Xie, T Navessin, S Holdcroft. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Applied Materials & Interfaces, 2010, 2(2): 375–384
https://doi.org/10.1021/am900600y
48 T Soboleva, K Malek, Z Xie, T Navessin, S Holdcroft. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity. ACS Applied Materials & Interfaces, 2011, 3(6): 1827–1837
https://doi.org/10.1021/am200590w
49 K Malek, M Eikerling, Q Wang, T Navessin, Z Liu. Self-organization in catalyst layers of polymer electrolyte fuel cells. Journal of Physical Chemistry C, 2007, 111(36): 13627–13634
https://doi.org/10.1021/jp072692k
50 K Malek, T Mashio, M Eikerling. Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach. Electrocatalysis (New York), 2011, 2(2): 141–157
https://doi.org/10.1007/s12678-011-0047-0
51 M Lopez-Haro, L Guétaz, T Printemps, A Morin, S Escribano, P-H Jouneau , P Bayle-Guillemaud, F Chandezon, G Gebel . Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nature Communications, 2014
52 L Guetaz, M Lopez-Haro, S Escribano, A Morin, G Gebel, D A Cullen, K L More, R L Borup. Catalyst-Layer Ionomer Imaging of Fuel Cells. ECS Transactions, 2015, 69(17): 455–464
https://doi.org/10.1149/06917.0455ecst
53 C Boyer, S Gamburzev, O Velev, S Srinivasan, A J Appleby. Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes. Electrochimica Acta, 1998, 43(24): 3703–3709
https://doi.org/10.1016/S0013-4686(98)00128-5
54 R Makharia, M F Mathias, D R Baker. Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. Journal of the Electrochemical Society, 2005, 152(5): A970–A977
https://doi.org/10.1149/1.1888367
55 Y Liu, M Murphy, D R Baker, W Gu, C Ji, J Jorne, H A Gasteiger. Determination of electrode sheet resistance in cathode catalyst layer by AC impedance. ECS Transactions, 2007, 11(1): 473– 484
56 Y Liu, C Ji, W Gu, D R Baker, J Jorne, H A Gasteiger. Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight. Journal of the Electrochemical Society, 2010, 157(8): B1154–B1162
https://doi.org/10.1149/1.3435323
57 H Iden, A Ohma, K Shinohara. Analysis of proton transport in pseudo catalyst layers. Journal of the Electrochemical Society, 2009, 156(9): B1078–B1084
https://doi.org/10.1149/1.3169514
58 K C Hess, W K Epting, S Litster. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells. Analytical Chemistry, 2011, 83(24): 9492–9498
https://doi.org/10.1021/ac202231y
59 K Karan. Determination of CL Ionomer Conductivity. ECS Transactions, 2013, 50(2): 395–403
https://doi.org/10.1149/05002.0395ecst
60 D K Paul, A Fraser, K Karan. Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochemistry Communications, 2011, 13(8): 774–777
https://doi.org/10.1016/j.elecom.2011.04.022
61 D K Paul, R McCreery, K Karan. Proton transport property in supported Nafion nanothin films by electrochemical impedance spectroscopy. Journal of the Electrochemical Society, 2014, 161(14): F1395–F1402
https://doi.org/10.1149/2.0571414jes
62 Y Ono, Y Nagao. Interfacial structure and proton conductivity of Nafion at the Pt-deposited surface. Langmuir, 2016, 32(1): 352–358
https://doi.org/10.1021/acs.langmuir.5b02623
63 A Kusoglu, A Kwong, K T Clark, H P Gunterman, A Z Weber. Water uptake of fuel-cell catalyst layers. Journal of the Electrochemical Society, 2012, 159(9): F530–F535
https://doi.org/10.1149/2.031209jes
64 Y Fukuyama, T Shiomi, T Kotaka, Y Tabuchi. The impact of platinum reduction on oxygen transport in proton exchange membrane fuel cells. Electrochimica Acta, 2014, 117: 367–378
https://doi.org/10.1016/j.electacta.2013.11.179
65 T Suzuki, K Kudo, Y Morimoto. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. Journal of Power Sources, 2013, 222: 379–389
https://doi.org/10.1016/j.jpowsour.2012.08.068
66 J P Owejan, J E Owejan, W Gu. Impact of platinum loading and catalyst layer structure on PEMFC performance. Journal of the Electrochemical Society, 2013, 160(8): F824–F833
https://doi.org/10.1149/2.072308jes
67 H Liu, W K Epting, S Litster. Gas transport resistance in polymer electrolyte thin films on oxygen reduction reaction catalysts. Langmuir, 2015, 31(36): 9853–9858
https://doi.org/10.1021/acs.langmuir.5b02487
68 R Jinnouchi, K Kudo, N Kitano, Y Morimoto. Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochimica Acta, 2016, 188: 767–776
https://doi.org/10.1016/j.electacta.2015.12.031
69 N Nonoyama, S Okazaki, A Z Weber, Y Ikogi, T Yoshida. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. Journal of the Electrochemical Society, 2011, 158(4): B416
https://doi.org/10.1149/1.3546038
70 M Sabharwal, L M Pant, A Putz, D Susac, J Jankovic, M Secanell. Analysis of catalyst layer microstructures: from imaging to performance. Fuel Cells (Weinheim), 2016, 16(6): 734–753
https://doi.org/10.1002/fuce.201600008
71 J Giner, C Hunter. The Mechanism of operation of the Teflon-bonded gas diffusion electrode: a mathematical model. Journal of the Electrochemical Society, 1969, 116(8): 1124–1130
https://doi.org/10.1149/1.2412232
72 R P Iczkowski, M B Cutlip. Voltage loss in fuel cell cathodes. Journal of the Electrochemical Society, 1980, 127(7): 1433–1440
https://doi.org/10.1149/1.2129925
73 S J Ridge, R E White, Y Tsou. Oxygen reduction in a proton exchange membrane test cell. Journal of the Electrochemical Society, 1989, 136(7): 1902–1909
https://doi.org/10.1149/1.2097078
74 H Celiker, M A Alsaleh, S Gultekin. A mathematical model for the performance of raney metal gas diffusion electrodes. Journal of the Electrochemical Society, 1991, 138(6): 1671–1681
https://doi.org/10.1149/1.2085852
75 K Broka, P Ekdunge. Modelling the PEM fuel cell cathode. Journal of Applied Electrochemistry, 1997, 27(3): 281–289
https://doi.org/10.1023/A:1018476612810
76 J Ihonen, F Jaouen, G Lindbergh, A Lundblad, G Sundholm. Investigation of mass-transport limitation in the solid polymer fuel cell cathode. Journal of the Electrochemical Society, 2002, 149(4): A448–A454
https://doi.org/10.1149/1.1456917
77 W Sun, B A Peppley, K Karan. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochimica Acta, 2005, 50(16–17): 3359–3374
https://doi.org/10.1016/j.electacta.2004.12.009
78 S Kamarajugadda, S Mazumder. Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance. Journal of Power Sources, 2008, 183(2): 629–642
https://doi.org/10.1016/j.jpowsour.2008.05.072
79 N P Siegel, M W Ellis, D J Nelson, M R von Spakovsky. Single domain PEMFC model based on agglomerate catalyst geometry. Journal of Power Sources, 2003, 115(1): 81–89
https://doi.org/10.1016/S0378-7753(02)00622-5
80 K M Yin. Parametric study of proton-exchange-membrane fuel cell cathode using an agglomerate model. Journal of the Electrochemical Society, 2005, 152(3): A583–A593
https://doi.org/10.1149/1.1854611
81 M Secanell, R Songprakorp, A Suleman, N Djilali. Multi-objective optimization of a polymer electrolyte fuel cell membrane electrode assembly. Energy & Environmental Science, 2008, 1(3): 378–388
https://doi.org/10.1039/b804654a
82 M Secanell, K Karan, A Suleman, N Djilali. Multivariable optimization of PEMFC cathodes using an agglomerate model. Electrochimica Acta, 2007, 52(22): 6318–6337
https://doi.org/10.1016/j.electacta.2007.04.028
83 N Khajeh-Hosseini-Dalasm, M Fesanghary, K Fushinobu, K Okazaki. A study of the agglomerate catalyst layer for the cathode side of a proton exchange membrane fuel cell: modelling and optimization. Electrochimica Acta, 2012, 60: 55–65
https://doi.org/10.1016/j.electacta.2011.10.099
84 R M Rao, D Bhattacharyya, R Rengaswamy, S R Choudhury. A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode. Journal of Power Sources, 2007, 173(1): 375–393
https://doi.org/10.1016/j.jpowsour.2007.04.053
85 M Eikerling. Water management in cathode catalyst layers of PEM fuel cells a structure-based model. Journal of the Electrochemical Society, 2006, 153(3): E58
https://doi.org/10.1149/1.2160435
86 J Liu, M Eikerling. Model of cathode catalyst layers for polymer electrolyte fuel cells: the role of porous structure and water accumulation. Electrochimica Acta, 2008, 53(13): 4435–4446
https://doi.org/10.1016/j.electacta.2008.01.033
87 P Jain, L T Biegler, M S Jhon. Sensitivity of PEFC models to cathode layer microstructure. Journal of the Electrochemical Society, 2010, 157(8): B1222–B1229
https://doi.org/10.1149/1.3454725
88 W K Epting, S Litster. Effects of an agglomerate size distribution on the PEFC agglomerate model. International Journal of Hydrogen Energy, 2012, 37(10): 8505–8511
https://doi.org/10.1016/j.ijhydene.2012.02.099
89 F C Cetinbas, S G Advani, A K Prasad. A modified agglomerate model with discrete catalyst particles for the PEM fuel cell catalyst layer. Journal of the Electrochemical Society, 2013, 160(8): F750–F756
https://doi.org/10.1149/2.017308jes
90 Q Wang, M Eikerling, D Song. Structure and performance of different types of agglomerates in cathode catalyst layer of PEM fuel cells. Journal of Electroanalytical Chemistry, 2004, 573(1): 61–69
91 Z Xia, Q Wang, M Eikerling, Z Liu. Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells. Canadian Journal of Chemistry, 2008, 86(7): 657–667
https://doi.org/10.1139/v08-053
92 E Sadeghi, A Putz, M Eikerling. Hierarchical model of reaction rate distributions and effectiveness factors in catalyst layers of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2013, 160(10): F1159–F1169
https://doi.org/10.1149/2.090310jes
93 E Sadeghi, A Putz, M Eikerling. Effects of ionomer coverage on agglomerate effectiveness in catalyst layers of polymer electrolyte fuel cells. Journal of Solid State Electrochemistry, 2014, 18(5): 1271–1279
https://doi.org/10.1007/s10008-013-2268-z
94 I V Zenyuk, S Litster. Modelling ion conduction and electrochemical reactions in water films on thin-film metal electrodes with application to low temperature fuel cells. Electrochimica Acta, 2014, 146(10): 194–206
https://doi.org/10.1016/j.electacta.2014.08.070
95 R Kotoi, G Inoue, M Kawase. Reaction and mass transport simulation of polymer electrolyte fuel cell for the analysis of the key factors affecting the output performance in the catalyst layer. ECS Transactions, 2016, 75(14): 385–392
https://doi.org/10.1149/07514.0385ecst
96 M L Perry, J Newman, E J Cairns. Mass transport in gas-diffusion electrodes: a diagnostic tool for fuel-cell cathodes. Journal of the Electrochemical Society, 1998, 145(1): 5–15
https://doi.org/10.1149/1.1838202
97 G Lin, W He, T van Nguyen. Modelling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell. Journal of the Electrochemical Society, 2004, 151(12): A1999–A2006
https://doi.org/10.1149/1.1808633
98 R Madhusudana Rao, R Rengaswamy. Dynamic characteristics of spherical agglomerate for study of cathode catalyst layers in proton exchange membrane fuel cells (PEMFC). Journal of Power Sources, 2006, 158(1): 110–123
https://doi.org/10.1016/j.jpowsour.2005.09.043
99 D Harvey, J G Pharoah, K Karan. A comparison of different approaches to modelling the PEMFC catalyst layer. Journal of Power Sources, 2008, 179(1): 209–219
https://doi.org/10.1016/j.jpowsour.2007.12.077
100 P K Das, X Li, Z S Liu. A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells. Journal of Power Sources, 2008, 179(1): 186–199
https://doi.org/10.1016/j.jpowsour.2007.12.085
101 S Ma, C H Solterbeck, M Odgaard, E Skou. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents. Applied Physics A, Materials Science & Processing, 2009, 96(3): 581–589
https://doi.org/10.1007/s00339-008-5050-9
102 W Yoon, A Z Weber. Modelling low-platinum-loading effects in fuel-cell catalyst layers. Journal of the Electrochemical Society, 2011, 158(158): B1007–B1018
https://doi.org/10.1149/1.3597644
103 S Jomori, N Nonoyama, T Yoshida. Analysis and modelling of PEMFC degradation: effect on oxygen transport. Journal of Power Sources, 2012, 215: 18–27
https://doi.org/10.1016/j.jpowsour.2012.04.069
104 P Dobson, C Lei, T Navessin, M Secanell. Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation. Journal of the Electrochemical Society, 2012, 159(5): B514–B523
https://doi.org/10.1149/2.041205jes
105 F C Cetinbas, S G Advani, A K Prasad. Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles. Journal of Power Sources, 2014, 250(3): 110–119
https://doi.org/10.1016/j.jpowsour.2013.10.138
106 M Moore, P Wardlaw, P Dobson, J J Boisvert, A Putz, R J Spiteri, M Secanell. Understanding the effect of kinetic and mass transport processes in cathode agglomerates. Journal of the Electrochemical Society, 2014, 161(8): E3125–E3137
https://doi.org/10.1149/2.010408jes
107 L Hao, K Moriyama, W Gu, C Y Wang. Modelling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells. Journal of the Electrochemical Society, 2015, 162(8): F854–F867
https://doi.org/10.1149/2.0221508jes
108 M F Weber, S Mamicheafara, M J Dignam. Sputtered fuel cell electrodes. Journal of the Electrochemical Society, 1987, 134(6): 1416–1419
https://doi.org/10.1149/1.2100682
109 R O’Hayre, S J Lee, S Cha, F B Prinz. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. Journal of Power Sources, 2002, 109(2): 483–493
https://doi.org/10.1016/S0378-7753(02)00238-0
110 A Bonakdarpour, K Stevens, G D Vernstrom, R Atanasoski, A K Schmoeckel, M K Debe, J R Dahn. Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochimica Acta, 2007, 53(2): 688–694
https://doi.org/10.1016/j.electacta.2007.07.038
111 M D Gasda, R Teki, T M Lu, N Koratkar, G A Eisman, D Gall. Sputter-deposited Pt PEM fuel cell electrodes: particles vs. layers. Journal of the Electrochemical Society, 2009, 156(5): B614–B619
https://doi.org/10.1149/1.3097188
112 M Cavarroc, A Ennadjaoui, M Mougenot, P Brault, R Escalier, Y Tessier, J Durand, S Roualdès, T Sauvage, C Coutanceau. Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochemistry Communications, 2009, 11(4): 859–861
https://doi.org/10.1016/j.elecom.2009.02.012
113 B Schwanitz, H Schulenburg, M Horisberger, A Wokaun, G G Scherer. Stability of ultra-low Pt anodes for polymer electrolyte fuel cells prepared by magnetron sputtering. Electrocatalysis (New York), 2011, 2(1): 35–41
https://doi.org/10.1007/s12678-010-0032-z
114 B Schwanitz, A Rabis, M Horisberger, G G Scherer, T J Schmidt. Sputtered cathodes for polymer electrolyte fuel cells: insights into potentials, challenges and limitations. Chimia, 2012, 66(3): 110–119
https://doi.org/10.2533/chimia.2012.110
115 W Mei, T Fukazawa, Y Nakano, Y Akasaka, K Naito. Development of alternated catalyst layer structure for PEM fuel cells. ECS Transactions, 2013, 50(2): 1377–1384
https://doi.org/10.1149/05002.1377ecst
116 W Mei, T Fukazawa, T Yang, N Yoshinaga, Y Kanai. Application of modified-ACLS electrodes on low-platinum PEFCs. ECS Transactions, 2015, 69(17): 755–759
https://doi.org/10.1149/06917.0755ecst
117 G Sievers, S Mueller, A Quade, F Steffen, S Jakubith, A Kruth, V Brueser. Mesoporous Pt–Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. Journal of Power Sources, 2014, 268: 255–260
https://doi.org/10.1016/j.jpowsour.2014.06.013
118 M S Çögenli, S Mukerjee, A B Yurtcan. Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition. Fuel Cells (Weinheim), 2015, 15(2): 288–297
https://doi.org/10.1002/fuce.201400062
119 S Stucki, A Menth. Industrial water electrolysis. In: Srinivasan S, Salzano F J, Landgrebe A Reds. The Electrochemical Society Softbound Proceedings Series, Pennington, USA, 1978, 180–185
120 J McBreen. Voltammetric studies of electrodes in contact with ionomeric membranes. Journal of the Electrochemical Society, 1985, 132(5): 1112–1116
https://doi.org/10.1149/1.2114023
121 W Tu, W Liu, C Cha, B L Wu. Study of the powder/membrane interface by using the powder microelectrode technique I. The Pt-black/Nafion® interfaces. Electrochimica Acta, 1998, 43(24): 3731–3739
https://doi.org/10.1016/S0013-4686(98)00131-5
122 U A Paulus, Z Veziridis, B Schnyder, M Kuhnke, G G Scherer, A Wokaun. Fundamental investigation of catalyst utilization at the electrode/solid polymer electrolyte interface: Part I. Development of a model system. Journal of Electroanalytical Chemistry, 2003, 541: 77–91
https://doi.org/10.1016/S0022-0728(02)01416-X
123 J Jiang, B Yi. Thickness effects of a carbon-supported platinum catalyst layer on the electrochemical reduction of oxygen in sulfuric acid solution. Journal of Electroanalytical Chemistry, 2005, 577(1): 107–115
https://doi.org/10.1016/j.jelechem.2004.11.022
124 S Tominaka, C Wu, K Kuroda, T Osaka. Electrochemical analysis of perpendicular mesoporous Pt electrode filled with pure water for clarifying the active region in fuel cell catalyst layers. Journal of Power Sources, 2010, 195(8): 2236–2240
https://doi.org/10.1016/j.jpowsour.2009.11.002
125 E L Thompson, D Baker. Proton conduction on ionomer-free Pt surfaces. ECS Transactions, 2011, 41(1): 709–720
126 S J, An S. Litster In Situ, ionic conductivity measurement of ionomer/binder-free Pt catalyst under fuel cell operating condition. ECS Transactions, 2013, 58(1): 427–441
127 M K Debe, A J Steinbach. An empirical model for the flooding behavior of ultra-thin PEM fuel cell electrodes. ECS Transactions, 2007, 11(1): 659–673
128 A J Steinbach, M K Debe, J Wong. A new paradigm for PEMFC ultra-thin electrode water management at low temperatures. ECS Transactions, 2010, 33(1): 1179–1188
129 A J Steinbach, M K Debe, M J Pejsa. Influence of anode GDL on PEMFC ultra-thin electrode water management at low temperatures. ECS Transactions, 2011, 41(1): 449–457
130 M K Debe, R T Atanasoski, A J Steinbach. Nanostructured thin film electrocatalysts-current status and future potential. ECS Transactions, 2011, 41(1): 937–954
131 A Kongkanand, M Dioguardi, C Ji, E L Thompson. Improving operational robustness of NSTF electrodes in PEM fuel cells. Journal of the Electrochemical Society, 2012, 159(8): F405– F411
https://doi.org/10.1149/2.045208jes
132 P K Sinha, W Gu, A Kongkanand, E Thompson. Performance of nano structured thin film (NSTF) electrodes under partially-humidified conditions. Journal of the Electrochemical Society, 2011, 158(7): B831–B840
https://doi.org/10.1149/1.3590748
133 A Kongkanand, J E Owejan, S Moose, M Dioguardi, M Biradar, R Makharia. Development of dispersed-catalyst/NSTF hybrid electrode. Journal of the Electrochemical Society, 2012, 159(11): F676–F682
https://doi.org/10.1149/2.023211jes
134 A Kongkanand, P K Sinha. Load transients of nanostructured thin film electrodes in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2011, 158(6): B703–B711
https://doi.org/10.1149/1.3574368
135 K Chan, M Eikerling. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs. Journal of the Electrochemical Society, 2011, 158(1): B18–B28
https://doi.org/10.1149/1.3505042
136 O A Petrii. Zero charge potentials of platinum metals and electron work functions. Russian Journal of Electrochemistry, 2013, 49(5): 401–422
https://doi.org/10.1134/S1023193513050145
137 I V Zenyuk, S Litster. Modelling ion conduction and electrochemical reactions in water films on thin-film metal electrodes with application to low temperature fuel cells. Electrochimica Acta, 2014, 146: 194–206
https://doi.org/10.1016/j.electacta.2014.08.070
138 A N Frumkin, O A Petrii. Potentials of zero total and zero free charge of platinum group metals. Electrochimica Acta, 1975, 20(5): 347–359
https://doi.org/10.1016/0013-4686(75)90017-1
139 N Garcia-Araez, V Climent, J M Feliu. Potential-dependent water orientation on Pt(111), Pt(100), and Pt(110), as inferred from laser-pulsed experiments. electrostatic and chemical effects. Journal of Physical Chemistry C, 2009, 113(21): 9290–9304
https://doi.org/10.1021/jp900792q
140 J Huang, A Malek, J Zhang, M H Eikerling. Non-monotonic surface charging behavior of platinum: a paradigm change. Journal of Physical Chemistry C, 2016, 120(25): 13587–13595
https://doi.org/10.1021/acs.jpcc.6b03930
141 J Huang, J Zhang, M Eikerling. Theory of electrostatic phenomena in water-filled Pt nanopores. Faraday Discussions, 2016, 193: 427–446
https://doi.org/10.1039/C6FD00094K
142 J Huang, J Zhang, M H Eikerling. Particle proximity effect in nanoparticle electrocatalysis: surface charging and electrostatic interactions. Journal of Physical Chemistry C, 2017, 121(9): 4806–4815
https://doi.org/10.1021/acs.jpcc.6b10842
143 P K Das, A Z Weber. Water management in PEMFC with ultra-thin catalyst-layers. ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013
144 P K Das, A D Santamaria, A Z Weber. Role of GDL surface wettability and operating conditions in liquid-water removal from NSTF catalyst layers. ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014
145 I V Zenyuk, P K Das, A Z Weber. Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modelling. Journal of the Electrochemical Society, 2016, 163(7): F691–F703
https://doi.org/10.1149/2.1161607jes
146 K Chan, M Eikerling. Water balance model for polymer electrolyte fuel cells with ultrathin catalyst layers. Physical Chemistry Chemical Physics, 2014, 16(5): 2106–2117
https://doi.org/10.1039/C3CP54849J
147 Y Furuya, H Iden, T Mashio, A Ohma, K Shinohara. Effect of ionomer coverage on Pt-based catalyst on ORR activity. The Electrochemical Society, 2012 (40): 1522–1522
148 A D Modestov, A V Kapustin, V B Avakov, I K Landgraf, M R Tarasevich. Cathode catalyst layers with ionomer to carbon mass ratios in the range 0–2 studied by electrochemical impedance spectroscopy, cyclic voltammetry, and performance measurements. Journal of Power Sources, 2014, 272: 735–742
https://doi.org/10.1016/j.jpowsour.2014.08.113
149 B Dong, L Gwee, D Salas-de La Cruz, K I Winey, Y A Elabd. Super proton conductive high-purity Nafion nanofibers. Nano Letters, 2010, 10(9): 3785–3790
https://doi.org/10.1021/nl102581w
150 A Nouri-Khorasani, K Malek, A Malek, T Mashio, D P Wilkinson, M H Eikerling. Molecular modelling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer. Catalysis Today, 2016, 262: 133–140
https://doi.org/10.1016/j.cattod.2015.10.020
151 M J Eslamibidgoli, J Huang, T Kadyk, A Malek, M Eikerling. How theory and simulation can drive fuel cell electrocatalysis. Nano Energy, 2016, 29: 334–361
https://doi.org/10.1016/j.nanoen.2016.06.004
152 T Muzaffar, T Kadyk, M Eikerling. Physical modelling of the proton density in nanopores of PEM fuel cells catalyst layers. Electrochimica Acta, 2017, 245: 1048–1058
https://doi.org/10.1016/j.electacta.2017.05.052
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed