Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (3): 260-267   https://doi.org/10.1007/s11708-017-0499-x
  本期目录
Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction
Hongjie ZHANG1, Yachao ZENG1, Longsheng CAO1, Limeng YANG1, Dahui FANG1, Baolian YI2, Zhigang SHAO2()
1. Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of the Chinese Academy of Sciences, Beijing 100039, China
2. Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 全文: PDF(409 KB)   HTML
Abstract

In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic performance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt3Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt3Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (Oads or OHads) and the release of active sites.

Key wordsPtNi alloy    nanowires    oxygen reduction reaction    enhanced activity    good stability
收稿日期: 2017-07-11      出版日期: 2017-09-07
Corresponding Author(s): Zhigang SHAO   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(3): 260-267.
Hongjie ZHANG, Yachao ZENG, Longsheng CAO, Limeng YANG, Dahui FANG, Baolian YI, Zhigang SHAO. Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction. Front. Energy, 2017, 11(3): 260-267.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0499-x
https://academic.hep.com.cn/fie/CN/Y2017/V11/I3/260
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
https://doi.org/10.1038/nature11115
2 Tang Q, Jiang  L, Jiang Q ,  Wang S, Sun  G. Enhanced activity and stability of a Au decorated Pt/PdCo/C electrocatalyst toward oxygen reduction reaction. Electrochimica Acta, 2012, 77(9): 104–110
https://doi.org/10.1016/j.electacta.2012.05.081
3 Bele M, Jovanovic  P, Pavlisic A ,  Jozinovic B ,  Zorko M ,  Recnik A ,  Chernyshova E ,  Hocevar S ,  Hodnik N ,  Gaberscek M . A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis. Chemical Communications, 2014, 50(86): 13124–13126
https://doi.org/10.1039/C4CC05637J
4 Zhang J, Sasaki  K, Sutter E ,  Adzic R R . Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222
https://doi.org/10.1126/science.1134569
5 Wang Y J, Zhao  N N, Fang  B Z, Li  H, Bi X T T ,  Wang H J . Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467
https://doi.org/10.1021/cr500519c
6 Chen Z W, Higgins  D, Yu A P ,  Zhang L ,  Zhang J J . A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 2011, 4(9): 3167–3192
https://doi.org/10.1039/c0ee00558d
7 Zheng Y, Jiao  Y, Jaroniec M ,  Jin Y G ,  Qiao S Z . Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small, 2012, 8(23): 3550–3566
https://doi.org/10.1002/smll.201200861
8 Bai Y Z, Yi  B L, Li  J, Jiang S F ,  Zhang H J ,  Shao Z G ,  Song Y J . A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework. Chinese Journal of Catalysis, 2016, 37(7): 1127–1133
https://doi.org/10.1016/S1872-2067(15)61104-4
9 Greeley J, Mavrikakis  M. Alloy catalysts designed from first principles. Nature Materials, 2004, 3(11): 810–815
https://doi.org/10.1038/nmat1223
10 Wu J B, Yang  H. Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research, 2013, 46(8): 1848–1857
https://doi.org/10.1021/ar300359w
11 Zhang J, Mo  Y, Vukmirovic M B ,  Klie R, Sasaki  K, Adzic R R . Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. Journal of Physical Chemistry B Materials Surfaces Interfaces Amp Biophysical, 2004, 108(30): 10955–10964
12 Zhang J L, Vukmirovic  M B, Xu  Y, Mavrikakis M ,  Adzic R R . Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 44(14): 2132–2135
https://doi.org/10.1002/anie.200462335
13 Zhu H Y, Zhang  S, Guo S J ,  Su D, Sun  S H. Synthetic control of FePtM nanorods (M= Cu, Ni) to enhance the oxygen reduction reaction. Journal of the American Chemical Society, 2013, 135(19): 7130–7133
https://doi.org/10.1021/ja403041g
14 You H J, Yang  S C, Ding  B J, Yang  H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. ChemInform, 2013, 42(7): 2880–2904
15 Zhao X, Yin  M, Ma L ,  Liang L ,  Liu C P ,  Liao J H ,  Lu T H ,  Xing W. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science, 2011, 4(8): 2736–2753
https://doi.org/10.1039/c1ee01307f
16 Li Y J, Chen  L, Chen K ,  Quan F X ,  Chen C F . Monodisperse PdCu@PtCu Core@Shell nanocrystal and their high activity and durability for oxygen reduction reaction. Electrochimica Acta, 2016, 192: 227–233
https://doi.org/10.1016/j.electacta.2016.01.147
17 Wang G, Huang  B, Xiao L ,  Ren Z, Chen  H, Wang D ,  Abruña H D ,  Lu J, Zhuang  L. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. Journal of the American Chemical Society, 2014, 136(27): 9643–9649
https://doi.org/10.1021/ja503315s
18 Huang X Q, Zhao  Z P, Chen  Y, Zhu E B ,  Li M F ,  Duan X F ,  Huang Y . A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy & Environmental Science, 2014, 7(9): 2957–2962
https://doi.org/10.1039/C4EE01082E
19 Huang X Q, Zhao  Z P, Cao  L, Chen Y ,  Zhu E B ,  Lin Z Y ,  Li M F ,  Yan A M ,  Zettl A ,  Wang Y M ,  Duan X F ,  Mueller T ,  Huang Y . High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science, 2015, 348(6240): 1230–1234
https://doi.org/10.1126/science.aaa8765
20 Chen C, Kang  Y J, Huo  Z Y, Zhu  Z W, Huang  W Y, Xin  H L L, Snyder  J D, Li  D G, Herron  J A, Mavrikakis  M, Chi M F ,  More K L ,  Li Y D ,  Markovic N M ,  Somorjai G A ,  Yang P D ,  Stamenkovic V R . Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343(6177): 1339–1343
https://doi.org/10.1126/science.1249061
21 Yang H Z, Zhang  J, Sun K ,  Zou S Z ,  Fang J Y . Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes. Angewandte Chemie International Edition in English, 2010, 49(38): 6848–6851
https://doi.org/10.1002/anie.201002888
22 Wang S Y, Jiang  S P, Wang  X, Guo J . Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells. Electrochimica Acta, 2011, 56(3): 1563–1569
https://doi.org/10.1016/j.electacta.2010.10.055
23 Pozio A, de Francesco  M, Cemmi A ,  Cardellini F ,  Giorgi L . Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002, 105(1): 13–19
https://doi.org/10.1016/S0378-7753(01)00921-1
24 Stamenkovic V R ,  Fowler B ,  Mun B S ,  Wang G F ,  Ross P N ,  Lucas C A ,  Markovic N M . Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315(5811): 493–497
https://doi.org/10.1126/science.1135941
25 Bu L Z, Zhang  N, Guo S J ,  Zhang X ,  Li J, Yao  J L, Wu  T, Lu G ,  Ma J Y ,  Su D, Huang  X Q. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354(6318): 1410–1414
https://doi.org/10.1126/science.aah6133
26 Suo Y G, Zhuang  L, Lu J T . First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angewandte Chemie, 2007, 46(16): 2862–2864
https://doi.org/10.1002/anie.200604332
27 Jayasayee K, van Veen  J A R, Manivasagam  T G, Celebi  S, Hensen E J M ,  de Bruijn F A . Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals. Applied Catalysis B: Environmental, 2012, 111–112(2): 515–526
https://doi.org/10.1016/j.apcatb.2011.11.003
28 Wang D S, Li  Y D. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Advanced Materials, 2011, 23(9): 1044–1060
https://doi.org/10.1002/adma.201003695
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed