Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 472-479   https://doi.org/10.1007/s11708-017-0502-6
  本期目录
Experiment study of a quartz tube falling particle receiver
Tianjian WANG1,2,3, Fengwu BAI1,2,3(), Shunzhou CHU1,2,3, Xiliang ZHANG1,2,3, Zhifeng WANG1,2,3
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China
3. Beijing Engineering Research Center of Solar Thermal Power, Beijing 101107, China; University of Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(353 KB)   HTML
Abstract

This paper presents an experimental evaluation of a specially designed falling particle receiver. A quartz tube was used in the design, with which the particles would not be blown away by wind. Concentrated solar radiation was absorbed and converted into thermal energy by the solid particles flowed inside the quartz tube. Several experiments were conducted to test the dynamic thermal performance of the receiver on solar furnace system. During the experiments, the maximum particle temperature rise is 212°C, with an efficiency of 61.2%, which shows a good thermal performance with a falling distance of 0.2 m in a small scale particle receiver. The average outlet particle temperature is affected by direct normal irradiance (DNI) and other factors such as wind speed. The solid particles obtain a larger viscosity with a higher temperature while smaller solid particles are easier to get stuck in the helix quartz tube. The heat capacity of the silicon carbide gets larger with the rise of particle temperature, because as the temperature of solid particles increases, the temperature rise of the silicon carbide decreases.

Key wordssolar thermal electricity    central receiver    particle receiver    experimental research
收稿日期: 2017-05-16      出版日期: 2017-12-14
Corresponding Author(s): Fengwu BAI   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 472-479.
Tianjian WANG, Fengwu BAI, Shunzhou CHU, Xiliang ZHANG, Zhifeng WANG. Experiment study of a quartz tube falling particle receiver. Front. Energy, 2017, 11(4): 472-479.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0502-6
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/472
Fig.1  
Fig.2  
Fig.3  
Name Specification Number Remark
Thermocouple Type K 8 Class 1
Data acquisition instrument HP Agilent 34972A 1
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Measured reflectance of differentareas/% Average value of measured reflectance/%
1 2 3 4 5 6 7 8 9 10
Heliostat 69.5 59.4 65.8 66.6 67.0 61.4 64.0 88.5 55.4 67.3 66.5
Parabolic concentrator 83.6 53.8 69.3 87.6 59.1 94.1 81.4 91.8 90.2 79.2 79.0
Tab.2  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Experiment No. Average DNI /(W•m-2) Particle flow rate /(g•s-1) Average inlet particle temperature/°C Particle diameter /mm Quartz tube type Average outlet particle temperature/°C Temperature rise/°C Thermal efficiency/%
1 778 7.17 18 1 Helix 174 156 24.3
2 833 7.75 79 1 Helix 256 177 32.0
3 812 5.21 167 1 Helix 304 137 19.4
4 500 8.12 26 1 Helix 238 212 61.2
5 583 7.92 166 1 Helix 294 128 38.3
6 591 7.04 210 1 Helix 351 141 40.1
7 432 7.12 18 1 Helix 147 129 33.3
8 707 8.49 39 1 Helix 221 182 38.7
9 818 8.74 16 0.5 Helix 176 160 27.8
10 614 14.92 19 1 Straight 116 97 31.1
11 619 21.71 98 1 Straight 166 68 37.8
12 622 14.92 123 1 Straight 190 67 27.0
13 538 15.37 17 0.5 Straight 149 132 52.0
14 515 11.53 111 0.5 Straight 201 90 33.4
15 455 13.83 135 0.5 Straight 206 71 37.3
Tab.3  
1 Ho C K. A review of high-temperature particle receivers for concentrating solar power. Applied Thermal Engineering, 2016, 109: 958–969
https://doi.org/10.1016/j.applthermaleng.2016.04.103
2 Bradshaw R W, Carling  R W. A review of the chemical and physical-properties of molten alkali nitrate salts and their effect on materials for solar central receivers. Journal of the Electrochemical Society, 1987, 134: C510–C511
3 Flamant G, Gauthier  D, Benoit H ,  Sans J L ,  Garcia R ,  Boissière B ,  Ansart R ,  Hemati M . Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal applications: on sun proof of concept. Chemical Engineering Science, 2013, 102(102): 567–576
https://doi.org/10.1016/j.ces.2013.08.051
4 Benoit H, Pérez López  I, Gauthier D ,  Sans J L ,  Flamant G . On-sun demonstration of a 750°C heat transfer fluid for concentrating solar systems: dense particle suspension in tube. Solar Energy, 2015, 118: 622–633
https://doi.org/10.1016/j.solener.2015.06.007
5 Marti J, Haselbacher  A, Steinfeld A . A numerical investigation of gas-particle suspensions as heat transfer media for high-temperature concentrated solar power. International Journal of Heat and Mass Transfer, 2015, 90: 1056–1070
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.033
6 Ansart R, García-Triñanes  P, Boissière B ,  Benoit H ,  Seville J P K ,  Simonin O . Dense gas-particle suspension upward flow used as heat transfer fluid in solar receiver: PEPT experiments and 3D numerical simulations. Powder Technology, 2017, 307: 25–36
https://doi.org/10.1016/j.powtec.2016.11.006
7 Pérez López I ,  Benoit H ,  Gauthier D ,  Sans J L ,  Guillot E ,  Mazza G ,  Flamant G . On-sun operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid. Solar Energy, 2016, 137(1): 463–476
https://doi.org/10.1016/j.solener.2016.08.034
8 Hruby J M, Steele  B R. A solid particle central receiver for solar-energy. Chemical Engineering Science, 1986, 82(2): 44–47
9 Evans G, Houf  W, Greif R ,  Crowe C . Gas-particle flow within a high temperature solar cavity receiver including radiation heat-transfer. Journal of Solar Energy Engineering, 1987, 109(2): 134–142
https://doi.org/10.1115/1.3268190
10 Meier A. A predictive CFD model for a falling particle receiver reactor exposed to concentrated sunlight. Chemical Engineering Science, 1999, 54(13–14): 2899–2905
https://doi.org/10.1016/S0009-2509(98)00376-5
11 Bertocchi R, Karni  J, Kribus A . Experimental evaluation of a non-isothermal high temperature solar particle receiver. Energy, 2004, 29(5–6): 689–700
12 Klein H H, Karni  J, Ben-Zvi R ,  Bertocchi R . Heat transfer in a directly irradiated solar receiver/reactor for solid-gas reactions. Solar Energy, 2007, 81(10): 1227–1239
https://doi.org/10.1016/j.solener.2007.01.004
13 Tan T D, Chen  Y T. Review of study on solid particle solar receivers. Renewable & Sustainable Energy Reviews, 2010, 14(1): 265–276
https://doi.org/10.1016/j.rser.2009.05.012
14 Siegel N P, Gross  M D, Coury  R. The development of direct absorption and storage media for falling particle solar central receivers. ASME Journal of Solar Energy Engineering, 2015, 137(4): 041003
https://doi.org/10.1115/1.4030069
15 Ho C K, Christian  J M, Yellowhair  J, Armijo K ,  Jeter S . Performance evaluation of a high-temperature falling particle receiver. In: ASME 2016 10th International Conference on Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Full Cell Science, Engineering and Technology, Charlotte, NC, USA, 2016
16 Ho C K, Christian  J M, Yellowhair  J, Siegel N ,  Jeter S ,  Golob M ,  Abdel-Khalik S I ,  Nguyen C ,  Al-Ansary H . On sun testing of an advanced falling particle receiver system. In: International Conference on Concentrating Solar Power & Chemical Energy System, 2016,  1734(1): 398–407
17 Bai F, Zhang  Y, Zhang X ,  Wang F, Wang  Y, Wang Z . Thermal performance of a quartz tube solid particle air receiver. Energy Procedia, 2014, 49: 284–294 
https://doi.org/10.1016/j.egypro.2014.03.031
18 Wang F, Bai  F, Wang Z ,  Zhang X . Numerical simulation of quartz tube solid particle air receiver. Energy Procedia, 2015, 69: 573–582
https://doi.org/10.1016/j.egypro.2015.03.066
19 Zhang Y N, Bai  F W, Zhang  X L, Wang  F Z, Wang  Z F. Experimental study of a single quartz tube solid particle air receiver. Energy Procedia, 2015, 69(C): 600–607
https://doi.org/10.1016/j.egypro.2015.03.069
20 Xiao L, Wu  S Y, Li  Y R. Numerical study on combined free-forced convection heat loss of solar cavity receiver under wind environments. International Journal of Thermal Sciences, 2012, 60(1): 182–194
https://doi.org/10.1016/j.ijthermalsci.2012.05.008
21 Wang F Z, Bai  F W, Wang  T J, Li  Q, Wang Z F . Experimental study of a single quartz tube solid particle air receiver. Solar Energy, 2016, 123: 185–205
https://doi.org/10.1016/j.solener.2015.10.048
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed