Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 414-436   https://doi.org/10.1007/s11708-017-0507-1
  本期目录
Absorption heat pump for waste heat reuse: current states and future development
Zhenyuan XU, Ruzhu WANG()
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(777 KB)   HTML
Abstract

Absorption heat pump attracts increasing attention due to its advantages in low grade thermal energy utilization. It can be applied for waste heat reuse to save energy consumption, reduce environment pollution, and bring considerable economic benefit. In this paper, three important aspects for absorption heat pump for waste heat reuse are reviewed. In the first part, different absorption heat pump cycles are classified and introduced. Absorption heat pumps for heat amplification and absorption heat transformer for temperature upgrading are included. Both basic single effect cycles and advanced cycles for better performance are introduced. In the second part, different working pairs, including the water based working pairs, ammonia based working pairs, alcohol based working pairs, and halogenated hydrocarbon based working pairs, for absorption heat pump are classified based on the refrigerant. In the third part, the applications of the absorption heat pump and absorption heat transformer for waste heat reuse in different industries are introduced. Based on the reviews in the three aspects, essential summary and future perspective are presented at last.

Key wordsabsorption    heat pump    heat transformer    waste heat    working pair
收稿日期: 2017-07-27      出版日期: 2017-12-14
Corresponding Author(s): Ruzhu WANG   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 414-436.
Zhenyuan XU, Ruzhu WANG. Absorption heat pump for waste heat reuse: current states and future development. Front. Energy, 2017, 11(4): 414-436.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0507-1
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/414
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Aim Configuration Features
Heat amplification Single effect cycle Basic cycle, widely used, COP= 1.5–1.8[16,18,19]
Double effect cycle High COP, seldom researched, COPth = 2.14–2.2, COPexp =1.67 [22,23]
Double lift cycle Large temperature lift, seldom researched,COPth = 1.34 [24]
GAX cycle High COP, feasible with ammonia-water,COP= 1.6–2.2 [17,2528]
Open cycle Simple system, work with moist gas,COP= 1.55–1.97 [2931]
Temperature lift Single stage cycle Basic cycle, widely used, COP= 0.3–0.5[3240]
Double stage cycle Three coupling configurations, absorption-evaporationcoupling has a better performance, COP= 0.22–0.33 [4750]
Double absorption cycle Large temperature lift, simple, widelyused, COP= 0.2–0.33 [33, 5155]
Double effect cycle High COP, small temperature lift,seldom used, COPexp = 0.58 [56]
Triple absorption cycle Large temperature lift, complicated,COP= 0.21–0.26 [5759]
Absorption-demixing cycle No generation, high theoretical COP,small temperature lift [4346]
Tab.1  
Refrigerant Classification Working pair Feature
Water LiBr-water LiBr-water [2224,32,38,39] Widely used, crystallization risk,corrosive
Carrol-water [3537,47,60,61] Solubility of LiBr is increased to80%
Additive 1-octanol [6263] Slightly better COP than LiBr-water
Additive 2-ethyl-1-hexanol [6263] Better COP than LiBr-water
Binary salt-water CaCl2-water[54,6466] Low cost, acceptable COP
LiCl-water [6566] Better performance than CaCl2-water
LiI-water [67] Low temperature lift, good COP
KNO3-water[57] Higher working temperature than LiBr-water
Multi salt-water LiBr+ LiNO3-water [18] 5% higher COP than LiBr-water, lesscorrosive
LiBr+ LiI+ LiNO3 + LiC-water [69] Better performance, lager solubility
CaCl2-ZnCl2-water [70] Larger temperature lift than binarysolution
LiCl-ZnCl2-water[70] Better performance than CaCl2–ZnCl2-water
Acid and lye NaOH-water [16,40,73] Smaller COP than LiBr-water, corrosive
NaOH-KOH-CsOH-water [74] High output temperature for heat pump
H2SO4-water [48,71,72] High COP, highly corrosive
Ammonia Ammonia-water Ammonia-water [17,25-27,75] Widely used, need of ratification
Salt-water-ammonia LiBr-water-ammonia [76] COP 0.05 lower than binary mixture
KOH-water-ammonia [77] Less rectification
Salt-ammonia NaSCN-ammonia [78] No rectification, possible crystallization
LiNO3-ammonia[15,78] Lower driven temperature than NaSCN-NH3
Organics Alcohol based E181/Pyr/NMP-TFE [49,79-84] Non-corrosive,low thermal conductivity,suitable for high working temperature
LiBr-CH3OH[16] Sub-zero condition, low COP
Ternary CH3OH working pairs [85] Sub-zero condition, low COP
Halogenated hydrocarbon based DMF-R21, DMF-R22 [86] DMF-R21 has better performance
DEGDME-R22, TEGDME-R22 [12,87] COP of 1.25 for absorption heat pump,DEGDME-R22 has better performance
R134a/R32. DMF-HFC32,
R124 based working pair [8890]
Only property of working pair hasbeen studied
Tab.2  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Aim Application Features
Heat amplification Power plant Flue gas from biomass boiler was reused,heat output at 90°C was used for district heating, COP= 1.6 for37000 h of operation, payback period was 5.4 years [8]
Gas boiler Flue gas from boiler was reused, heatoutput was used for preheating of water, COP= 1.6–1.75, boilerefficiency was increased by 5.5%–12% [14,19]
Waste processing Exhaust moist air from rotting processwas reused, heat output at 82°C was used for heating network,COP= 1.6–1.65 [91]
Drying process Exhaust air from dryer was reused,heat output was used to preheat the ambient air into dryer, air washeated to 50°C–100°C by two stage cycle with COP of1.4–1.34, air was heated to 50°C–60°C by singleeffect cycle with COP of 1.73–1.68 [24]
Metal processing Heat from cutting machine, weldingmachine and other machines was reused, heat output was reused fordrying, washing and heating, payback period was 4 years, and 40% CO2 emission was reduced [16]
Temperature lift Paper industry Contaminated steam from Kraft pulpprocess at 96°C was reused by double lift cycle, clean steam wasproduced with COP of 0.35 [92,93]
Oil industry (1) Waste hot water from heavy oilproduction was recovered by open absorption heat transformer, wasteheat was elevated from 70°C to 125°C, and steam at 120°Cwas produced for oil reservoir [94]
(2) Condensation heat from top ofdistillation column at 82°C was reused, steam at 155°C wasproduced for the bottom of distillation column, and 43% – 33%energy consumption was saved [33]
Chemical industry (1) Steam at 100°C from ethyleneamine plant was reused, steam at 145°C was produced, measuredheat capacity was 6.7 MW, COP= 0.49, payback period was two years,internal corrosion happened [8]
(2) Steam at 100°C from oleochemicalplant was reused, steam at 134°C was produced, COP= 0.45, paybackperiod was 18 months [95]
Rubber industry Steam and organic vapor mixture at98°C from coacervation section was reused, 110°C hot waterwas produced, COP= 0.47 for temperature lift of 25°C, heat capacitywas 5000 kW, payback period was 2 years [38]
Textile industry Hot water at 90°C from cogenerationplant was reused, heat output at 130°C was used for water heating,COP= 0.428 [97]
CO2 capture Condensate at 128°C from reboilerwas reused, heat output at 152°C was used to preheat the waterinto flash evaporator, COP= 0.5, overall energy consumption was reducedby 2.62%, payback period was 2.4 years [98]
Tab.3  
1 Lu  H, Price   L, Zhang  Q. Capturing the invisible resource: analysis of waste heat potential in Chinese industry. Applied Energy, 2016, 161: 497–511
https://doi.org/10.1016/j.apenergy.2015.10.060
2 Johnson I, Choate  W T, Davidson  A. Waste heat recovery. Technology and opportunities in US industry. Technical Report, 2008
3 Lecompte S, Huisseune  H, van den Broek M, Vanslambrouck B ,  De Paepe M . Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable & Sustainable Energy Reviews, 2015, 47: 448–461
https://doi.org/10.1016/j.rser.2015.03.089
4 Hatami M, Ganji  D, Gorji-Bandpy M . A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renewable & Sustainable Energy Reviews, 2014, 37: 168–181
https://doi.org/10.1016/j.rser.2014.05.004
5 Ebrahimi K, Jones  G F, Fleischer  A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable & Sustainable Energy Reviews, 2014, 31: 622–638
https://doi.org/10.1016/j.rser.2013.12.007
6 Zhang H, Wang  H, Zhu X ,  Qiu Y J ,  Li K, Chen  R, Liao Q . A review of waste heat recovery technologies towards molten slag in steel industry. Applied Energy, 2013, 112: 956–966
https://doi.org/10.1016/j.apenergy.2013.02.019
7 Brückner S, Liu  S, Miró L ,  Radspieler M ,  Cabeza L F ,  Lävemann E . Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Applied Energy, 2015, 151: 157–167
https://doi.org/10.1016/j.apenergy.2015.01.147
8 Centre IHP. Application of industrial heat pumps. IEA Heat Pump Programme Annex 35, 2014
9 Rivera W, Best  R, Cardoso M ,  Romero R . A review of absorption heat transformers. Applied Thermal Engineering, 2015, 91: 654–670
https://doi.org/10.1016/j.applthermaleng.2015.08.021
10 Wu W, Wang  B, Shi W ,  Li X. Absorption heating technologies: a review and perspective. Applied Energy, 2014, 130: 51–71
https://doi.org/10.1016/j.apenergy.2014.05.027
11 Sun J, Fu  L, Zhang S . A review of working fluids of absorption cycles. Renewable & Sustainable Energy Reviews, 2012, 16(4): 1899–1906
https://doi.org/10.1016/j.rser.2012.01.011
12 Takeshita I, Yamamoto  Y, Harada T ,  Wakamatsu N . Residential gas-fired absorption heat pump based on R22-DEGDME pair. Part 2 design, computer simulation and testing of a prototype. International Journal of Refrigeration, 1984, 7(5): 313–321
https://doi.org/10.1016/0140-7007(84)90121-X
13 Wu W, Wang  B, You T ,  Shi W, Li  X. A potential solution for thermal imbalance of ground source heat pump systems in cold regions: ground source absorption heat pump. Renewable Energy, 2013, 59: 39–48
https://doi.org/10.1016/j.renene.2013.03.020
14 Zhu K, Xia  J, Xie X ,  Jiang Y . Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger. Applied Thermal Engineering, 2014, 71(1): 213–218
https://doi.org/10.1016/j.applthermaleng.2014.06.047
15 Li X, Wu  W, Zhang X ,  Shi W, Wang  B. Energy saving potential of low temperature hot water system based on air source absorption heat pump. Applied Thermal Engineering, 2012, 48: 317–324
https://doi.org/10.1016/j.applthermaleng.2011.12.045
16 Abrahamsson K, Stenström  S, Aly G ,  Jernqvist Å . Application of heat pump systems for energy conservation in paper drying. International Journal of Energy Research, 1997, 21(7): 631–642
https://doi.org/10.1002/(SICI)1099-114X(19970610)21:7<631::AID-ER223>3.0.CO;2-W
17 Engler M, Grossman  G, Hellmann H M . Comparative simulation and investigation of ammonia-water: absorption cycles for heat pump applications. International Journal of Refrigeration, 1997, 20(7): 504–516
https://doi.org/10.1016/S0140-7007(97)00038-8
18 Jian S, Lin  F, Zhang S . Performance calculation of single effect absorption heat pump using LiBr+ LiNO3+ H2O as working fluid. Applied Thermal Engineering, 2010, 30(17–18): 2680–2684
https://doi.org/10.1016/j.applthermaleng.2010.07.018
19 Qu M, Abdelaziz  O, Yin H . New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement. Energy Conversion and Management, 2014, 87: 175–184
https://doi.org/10.1016/j.enconman.2014.06.083
20 Xu Z Y, Wang  R Z. Absorption refrigeration cycles: categorized based on the cycle construction. International Journal of Refrigeration, 2016, 62: 114–136
https://doi.org/10.1016/j.ijrefrig.2015.10.007
21 Kang Y, Kunugi  Y, Kashiwagi T . Review of advanced absorption cycles: performance improvement and temperature lift enhancement. International Journal of Refrigeration, 2000, 23(5): 388–401
https://doi.org/10.1016/S0140-7007(99)00064-X
22 Alarcón-Padilla D C ,  García-Rodríguez L, Blanco-Gálvez J. Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project. Desalination, 2007, 212(1–3): 303–310
https://doi.org/10.1016/j.desal.2006.10.015
23 Alarcón-Padilla D C ,  García-Rodríguez L, Blanco-Gálvez J. Experimental assessment of connection of an absorption heat pump to a multi-effect distillation unit. Desalination, 2010, 250(2): 500–505
https://doi.org/10.1016/j.desal.2009.06.056
24 Le Lostec B, Galanis  N, Baribeault J ,  Millette J . Wood chip drying with an absorption heat pump. Energy, 2008, 33(3): 500–512
https://doi.org/10.1016/j.energy.2007.10.013
25 Garimella S, Christensen  R N, Lacy  D. Performance evaluation of a generator-absorber heat-exchange heat pump. Applied Thermal Engineering, 1996, 16(7): 591–604
https://doi.org/10.1016/1359-4311(95)00041-0
26 Kang Y T, Kashiwagi  T. An environmentally friendly GAX cycle for panel heating: PGAX cycle. International Journal of Refrigeration, 2000, 23(5): 378–387
https://doi.org/10.1016/S0140-7007(99)00069-9
27 Kang Y T, Hong  H, Park K S . Performance analysis of advanced hybrid GAX cycles: HGAX. International Journal of Refrigeration, 2004, 27(4): 442–448
https://doi.org/10.1016/j.ijrefrig.2003.10.007
28 Phillips B. Development of a high-efficiency, gas-fired, absorption heat pump for residential and small-commercial applications. Oak Ridge National Lab., TN (USA); 1990
29 Lazzarin R, Longo  G, Piccininni F . An open cycle absorption heat pump. Heat Recovery Systems and CHP., 1992, 12(5): 391–396
https://doi.org/10.1016/0890-4332(92)90060-U
30 Westerlund L, Hermansson  R, Fagerström J . Flue gas purification and heat recovery: a biomass fired boiler supplied with an open absorption system. Applied Energy, 2012, 96: 444–450
https://doi.org/10.1016/j.apenergy.2012.02.085
31 Ye B, Liu  J, Xu X ,  Chen G, Zheng  J. A new open absorption heat pump for latent heat recovery from moist gas. Energy Conversion and Management, 2015, 94: 438–446
https://doi.org/10.1016/j.enconman.2015.02.001
32 Romero R J, Rodríguez-Martínez  A. Optimal water purification using low grade waste heat in an absorption heat transformer. Desalination, 2008, 220(1–3): 506–513
https://doi.org/10.1016/j.desal.2007.05.026
33 Rivera W, Cerezo  J, Rivero R ,  Cervantes J ,  Best R. Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane. International Journal of Energy Research, 2003, 27(14): 1279–1292
https://doi.org/10.1002/er.943
34 Mashimo K. Overview of heat transformers in Japan. Heat pumps: Prospects In Heat Pump Technology and Marking, 1987: 271–285
35 Riesch P, Scharfe  J, Ziegler F ,  Volkl J ,  Alefeld G. Part load behaviour of an absorption heat transformer. Conference Part load behaviour of an absorption heat transformer, 155–160
36 Rivera W, Romero  R, Best R ,  Heard C . Experimental evaluation of a single-stage heat transformer operating with the water/Carrol™ mixture. Energy, 1999, 24(4): 317–326
https://doi.org/10.1016/S0360-5442(98)00097-8
37 Ibarra-Bahena J, Romero  R, Velazquez-Avelar L ,  Valdez-Morales C ,  Galindo-Luna Y . Experimental thermodynamic evaluation for a single stage heat transformer prototype build with commercial PHEs. Applied Thermal Engineering, 2015, 75: 1262–1270
https://doi.org/10.1016/j.applthermaleng.2014.05.018
38 Ma X, Chen  J, Li S ,  Sha Q, Liang  A, Li W ,  Zhang J ,  Zheng G ,  Feng Z. Application of absorption heat transformer to recover waste heat from a synthetic rubber plant. Applied Thermal Engineering, 2003, 23(7): 797–806
https://doi.org/10.1016/S1359-4311(03)00011-5
39 Sekar S, Saravanan  R. Experimental studies on absorption heat transformer coupled distillation system. Desalination, 2011, 274(1–3): 292–301
https://doi.org/10.1016/j.desal.2011.01.064
40 Abrahamsson K, Gidner  A, Jernqvist Å . Design and experimental performance evaluation of an absorption heat transformer with self-circulation. Heat Recovery Systems and CHP., 1995, 15(3): 257–272
https://doi.org/10.1016/0890-4332(95)90010-1
41 Hultén M, Berntsson  T. The compression/absorption heat pump cycle—conceptual design improvements and comparisons with the compression cycle. International Journal of Refrigeration, 2002, 25(4): 487–497
https://doi.org/10.1016/S0140-7007(02)00014-2
42 Tarique S M, Siddiqui  M A. Performance and economic study of the combined absorption/compression heat pump. Energy Conversion and Management, 1999, 40(6): 575–591
https://doi.org/10.1016/S0196-8904(98)00045-4
43 Niang M, Cachot  T, Le Goff P . Evaluation of the performance of an absorption–demixtion heat pump for upgrading thermal waste heat. Applied Thermal Engineering, 1998, 18(12): 1277–1294
https://doi.org/10.1016/S1359-4311(97)00092-6
44 Alonso D, Cachot  T, Hornut J M . Performance simulation of an absorption heat transformer operating with partially miscible mixtures. Applied Energy, 2002, 72(3–4): 583–597
https://doi.org/10.1016/S0306-2619(02)00052-1
45 Privat R, Qian  J W, Alonso  D, Jaubert J N . Quest for an efficient binary working mixture for an absorption-demixing heat transformer. Energy, 2013, 55: 594–609
https://doi.org/10.1016/j.energy.2013.03.081
46 Alonso D, Cachot  T, Hornut J M . Experimental study of an innovative absorption heat transformer using partially miscible working mixtures. International Journal of Thermal Sciences, 2003, 42(6): 631–638
https://doi.org/10.1016/S1290-0729(03)00028-0
47 Romero R J, Martínez  A R, Silva  S, Cerezo J ,  Rivera W . Comparison of double stage heat transformer with double absorption heat transformer operating with Carrol–Water for industrial waste heat recovery. Chemical Engineering Transactions, 2011, 25: 129–134
48 Ciambelli P, Tufano  V. On the performance of advanced absorption heat transformers—I. The two stage configuration. Heat Recovery Systems and CHP., 1988, 8(5): 445–450
https://doi.org/10.1016/0890-4332(88)90049-X
49 Wang X, Shi  L, Yin J ,  Zhu M S . A two-stage heat transformer with H2O/LiBr for the first stage and 2,2,2-trifluoroethanol (TFE)/N-methy1–2-pyrrolidone (NMP) for the second stage. Applied Energy, 2002, 71(3): 235–249
https://doi.org/10.1016/S0306-2619(02)00009-0
50 Ji J, Ishida  M. Behavior of a two-stage absorption heat transformer combining latent and sensible heat exchange modes. Applied Energy, 1999, 62(4): 267–281
https://doi.org/10.1016/S0306-2619(99)00012-4
51 Zhao Z, Ma  Y, Chen J . Thermodynamic performance of a new type of double absorption heat transformer. Applied Thermal Engineering, 2003, 23(18): 2407–2414
https://doi.org/10.1016/j.applthermaleng.2003.08.006
52 Martínez H, Rivera  W. Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide. International Journal of Energy Research, 2009, 33(7): 662–674
https://doi.org/10.1002/er.1502
53 Saito K, Inoue  N, Nakagawa Y ,  Fukusumi Y ,  Yamada H ,  Irie T. Experimental and numerical performance evaluation of double-lift absorption heat transformer. Science and Technology for the Built Environment, 2015, 21(3): 312–322
https://doi.org/10.1080/23744731.2014.998937
54 Barragán R R M ,  Arellano G V M ,  Heard C L . Performance study of a double-absorption water/calcium chloride heat transformer. International Journal of Energy Research, 1998, 22(9): 791–803
https://doi.org/10.1002/(SICI)1099-114X(199807)22:9<791::AID-ER393>3.0.CO;2-W
55 Horuz I, Kurt  B. Single stage and double absorption heat transformers in an industrial application. International Journal of Energy Research, 2009, 33(9): 787–798
https://doi.org/10.1002/er.1512
56 Zhao Z, Zhang  X, Ma X . Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid. Applied Energy, 2005, 82(2): 107–116
https://doi.org/10.1016/j.apenergy.2004.10.012
57 Zhuo C, Machielsen  C. Performance of high-temperature absorption heat transformers using Alkitrate as the working pair. Applied Thermal Engineering, 1996, 16(3): 255–262
https://doi.org/10.1016/1359-4311(95)00069-0
58 Donnellan P, Byrne  E, Oliveira J ,  Cronin K . First and second law multidimensional analysis of a triple absorption heat transformer (TAHT). Applied Energy, 2014, 113: 141–151
https://doi.org/10.1016/j.apenergy.2013.06.049
59 Khamooshi M, Parham  K, Egelioglu F ,  Yari M, Salati  H. Simulation and optimization of novel configurations of triple absorption heat transformers integrated to a water desalination system. Desalination, 2014, 348: 39–48
https://doi.org/10.1016/j.desal.2014.06.006
60 Rivera W, Cardoso  M, Romero R . Theoretical comparison of single stage and advanced absorption heat transformers operating with water/lithium bromide and water/Carrol mixtures. International Journal of Energy Research, 1998, 22(5): 427–442
https://doi.org/10.1002/(SICI)1099-114X(199804)22:5<427::AID-ER376>3.0.CO;2-J
61 Best R, Rivera  W, Cardoso M ,  Romero R ,  Holland F . Modelling of single-stage and advanced absorption heat transformers operating with the water/Carrol mixture. Applied Thermal Engineering, 1997, 17(11): 1111–1122
https://doi.org/10.1016/S1359-4311(96)00090-7
62 Rivera W, Martínez  H, Cerezo J ,  Romero R ,  Cardoso M . Exergy analysis of an experimental single-stage heat transformer operating with single water/lithium bromide and using additives (1-octanol and 2-ethyl-1-hexanol). Applied Thermal Engineering, 2011, 31(16): 3526–3532
https://doi.org/10.1016/j.applthermaleng.2011.07.006
63 Rivera W, Cerezo  J. Experimental study of the use of additives in the performance of a single-stage heat transformer operating with water–lithium bromide. International Journal of Energy Research, 2005, 29(2): 121–130
https://doi.org/10.1002/er.1045
64 Barragán R, Heard  C, Arellano V ,  Best R, Holland  F. Experimental performance of the water/calcium chloride system in a heat transformer. International Journal of Energy Research, 1996, 20(8): 651–661
https://doi.org/10.1002/(SICI)1099-114X(199608)20:8<651::AID-ER180>3.0.CO;2-U
65 Grover G, Devotta  S, Holland F . Thermodynamic design data for absorption heat transformers—Part III. Operating on water-lithium chloride. Heat Recovery Systems and CHP., 1988, 8(5): 425–431
https://doi.org/10.1016/0890-4332(88)90047-6
66 Reyes R M B ,  Gómez V M A ,  García-Gutiérrez A. Performance modelling of single and double absorption heat transformers. Current Applied Physics, 2010, 10(2): S244–S248
https://doi.org/10.1016/j.cap.2009.11.052
67 Patil K, Chaudhari  S, Katti S . Thermodynamic design data for absorption heat transformers—part III. Operating on water-lithium iodide. Heat Recovery Systems and CHP., 1991, 11(5): 361–369
https://doi.org/10.1016/0890-4332(91)90004-N
68 Patil H, Chaudhari  S, Katti S . Thermodynamic design data for absorption heat pump systems operating on water-lithium iodide—part II. Heating. Heat Recovery Systems and CHP., 1991, 11(5): 351–360
https://doi.org/10.1016/0890-4332(91)90003-M
69 Bourouis M, Coronas  A, Romero R ,  Siqueiros J . Purification of seawater using absorption heat transformers with water-(LiBr+ LiI+ LiNO3+ LiCl) and low temperature heat sources. Desalination, 2004, 166: 209–214
https://doi.org/10.1016/j.desal.2004.06.075
70 Barragan R, Arellano  V, Heard C ,  Best R. Experimental performance of ternary solutions in an absorption heat transformer. International Journal of Energy Research, 1998, 22(1): 73–83
https://doi.org/10.1002/(SICI)1099-114X(199801)22:1<73::AID-ER362>3.0.CO;2-R
71 Ciambelli P, Tufano  V. The upgrading of waste heat by means of water-sulphuric acid absorption heat transformers. Heat Recovery Systems and CHP., 1987, 7(6): 517–524
https://doi.org/10.1016/0890-4332(87)90060-3
72 Ciambelli P, Tufano  V. On the performance of advanced absorption heat transformers—II. The double absorption configuration. Heat Recovery Systems and CHP., 1988, 8(5): 451–457
https://doi.org/10.1016/0890-4332(88)90050-6
73 Stephan K, Schmitt  M, Hebecker D ,  Bergmann T . Dynamics of a heat transformer working with the mixture NaOH H2O. International Journal of Refrigeration, 1997, 20(7): 483–495
https://doi.org/10.1016/S0140-7007(97)00047-9
74 Romero R, Rivera  W, Gracia J ,  Best R. Theoretical comparison of performance of an absorption heat pump system for cooling and heating operating with an aqueous ternary hydroxide and water/lithium bromide. Applied Thermal Engineering, 2001, 21(11): 1137–1147
https://doi.org/10.1016/S1359-4311(00)00111-3
75 Kurem E, Horuz  I. A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers. International Communications in Heat and Mass Transfer, 2001, 28(3): 427–438
https://doi.org/10.1016/S0735-1933(01)00247-0
76 Mclinden M, Radermacher  R. An experimental comparison of ammonia–water and ammonia–water–lithium bromide mixtures in an absorption heat pump. ASHRAE Technical Data Bulletin and ASHRAE Transactions, 1985, 91(2B): 1837–1846
77 Cacciola G, Restuccia  G, Rizzo G . Theoretical performance of an absorption heat pump using ammonia-water-potassium hydroxide solution. Heat Recovery Systems and CHP, 1990, 10(3): 177–185
https://doi.org/10.1016/0890-4332(90)90001-Z
78 Wu W, Zhang  X, Li X ,  Shi W, Wang  B. Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions. Applied Thermal Engineering, 2012, 48: 349–358
https://doi.org/10.1016/j.applthermaleng.2012.04.047
79 Genssle A, Stephan  K. Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE–E181. International Journal of Thermal Sciences, 2000, 39(1): 30–38
https://doi.org/10.1016/S1290-0729(00)00197-5
80 Zhang X, Hu  D. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water. Applied Thermal Engineering, 2012, 37: 129–135
https://doi.org/10.1016/j.applthermaleng.2011.11.006
81 Coronas A, Vallés  M, Chaudhari S K ,  Patil K R . Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems. Applied Thermal Engineering, 1996, 16(4): 335–345
https://doi.org/10.1016/1359-4311(95)00007-0
82 Zhuo C, Machielsen  C. Thermodynamic assessment of an absorption heat transformer with TFE-Pyr as the working pair. Heat Recovery Systems and CHP., 1994, 14(3): 265–272
https://doi.org/10.1016/0890-4332(94)90021-3
83 Zhuo C, Machielsen  C. Thermophysical properties of the trifluoroethanol-pyrrolidone system for absorption heat transformers. International Journal of Refrigeration, 1993, 16(5): 357–363
https://doi.org/10.1016/0140-7007(93)90009-W
84 Yin J, Shi  L, Zhu M S ,  Han L Z . Performance analysis of an absorption heat transformer with different working fluid combinations. Applied Energy, 2000, 67(3): 281–292
https://doi.org/10.1016/S0306-2619(00)00024-6
85 Iyoki S, Tanaka  K, Uemura T . Theoretical performance analysis of absorption refrigerating machine, absorption heat pump and absorption heat transformer using alcohol as working medium. International Journal of Refrigeration, 1994, 17(3): 180–190
https://doi.org/10.1016/0140-7007(94)90017-5
86 Kripalani V, Murthy  S S, Murthy  M K.Performance analysis of a vapour absorption heat transformer with different working fluid combinations. Journal of heat recovery systems, 1984, 4(3): 129–140
87 Ando E, Takeshita  I. Residential gas-fired absorption heat pump based on R 22-DEGDME pair. Part 1 thermodynamic properties of the R 22-DEGDME pair. International Journal of Refrigeration, 1984, 7(3): 181–185
https://doi.org/10.1016/0140-7007(84)90098-7
88 Borde I, Jelinek  M, Daltrophe N . Working fluids for an absorption system based on R124 (2-chloro-1, 1, 1, 2,-tetrafluoroethane) and organic absorbents. International Journal of Refrigeration, 1997, 20(4): 256–266
https://doi.org/10.1016/S0140-7007(97)00090-X
89 Han X H, Xu  Y J, Gao  Z J, Wang  Q, Chen G M . Vapor−liquid equilibrium study of an absorption heat transformer working fluid of (HFC-32+ DMF). Journal of Chemical & Engineering Data, 2011, 56(4): 1268–1272
https://doi.org/10.1021/je1011295
90 Jelinek M, Borde  I. Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents. Applied Thermal Engineering, 1998, 18(9–10): 765–771
https://doi.org/10.1016/S1359-4311(97)00114-2
91 Keil C, Plura  S, Radspieler M ,  Schweigler C . Application of customized absorption heat pumps for utilization of low-grade heat sources. Applied Thermal Engineering, 2008, 28(16): 2070–2076
https://doi.org/10.1016/j.applthermaleng.2008.04.012
92 Costa A, Bakhtiari  B, Schuster S ,  Paris J . Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency. Energy, 2009, 34(3): 254–260
https://doi.org/10.1016/j.energy.2008.07.019
93 Cortés E, Rivera  W. Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer. Energy, 2010, 35(3): 1289–1299
https://doi.org/10.1016/j.energy.2009.11.011
94 Zhang X, Hu  D, Li Z . Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat. Applied Thermal Engineering, 2014, 62(1): 239–244
https://doi.org/10.1016/j.applthermaleng.2013.09.015
95 Aly G, Abrahamsson  K, Jernqvist Å . Application of absorption heat transformers for energy conservation in the oleochemical industry. International Journal of Energy Research, 1993, 17(7): 571–582
https://doi.org/10.1002/er.4440170703
96 Currie J, Pritchard  C. Energy recovery and plume reduction from an industrial spray drying unit using an absorption heat transformer. Heat Recovery Systems and CHP., 1994, 14(3): 239–248
https://doi.org/10.1016/0890-4332(94)90019-1
97 Horuz I, Kurt  B. Absorption heat transformers and an industrial application. Renewable Energy, 2010, 35(10): 2175–2181
https://doi.org/10.1016/j.renene.2010.02.025
98 Zhang K, Liu  Z, Li Y ,  Li Q, Zhang  J, Liu H . The improved CO2 capture system with heat recovery based on absorption heat transformer and flash evaporator. Applied Thermal Engineering, 2014, 62(2): 500–506
https://doi.org/10.1016/j.applthermaleng.2013.10.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed