Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 510-515   https://doi.org/10.1007/s11708-017-0508-0
  本期目录
Exergy analysis and performance enhancement of isopropanol-acetone-hydrogen chemical heat pump
Min XU, Jun CAI, Xiulan HUAI()
Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(213 KB)   HTML
Abstract

Exergy loss analysis was conducted to identify the irreversibility in each component of the isopropanol-acetone-hydrogen chemical heat pump (IAH-CHP). The results indicate that the highest irreversibility on a system basis occurs in the distillation column. Moreover, the effect of operating parameters on thermodynamic performances of the IAH-CHP was studied and the optimal conditions were obtained. Finally, the potential methods to reduce the irreversibility of the IAH-CHP system were investigated. It is found that reactive distillation is apromising alternative. The enthalpy and exergy efficiency of the IAH-CHP with reactive distillation increases by 24.1% and 23.2%, respectively.

Key wordswaste heat reuse    chemical heat pump    exergy analysis    isopropanol
收稿日期: 2017-05-02      出版日期: 2017-12-14
Corresponding Author(s): Xiulan HUAI   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 510-515.
Min XU, Jun CAI, Xiulan HUAI. Exergy analysis and performance enhancement of isopropanol-acetone-hydrogen chemical heat pump. Front. Energy, 2017, 11(4): 510-515.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0508-0
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/510
Fig.1  
Contents Specifications
RadFrac (distillation column) Total stages 15
Feed stage 6
Column pressure/MPa 0.1
Distillate flow rate/(mol?s-1) 0.3
Catalyst loading in reboiler/kg 3.1
RPlug (exothermic reactor) Length/m 5
Diameter/m 0.1
Catalyst density/(kg?m-3) 2000
Bed voidage 0.4
Inlet temperature of the reactant/K 453
Pressure/MPa 0.14
Hydrogen to Acetone mole ratio, CH/Cace 1
Inlet temperature of the coolant/K 433
Coolant flow rate/(mol?s-1) 1
Compr(compressor) Isentropic efficiency 0.72
Mechanical efficiency 1
Tab.1  
Stream T/K P/MPa Mass flow rate/(kg?h-1) H/(kJ?kg-1) S/(kJ?kg-1?K-1)
1 312.13 0.10 32.45 3121.58 2.99
2 334.77 0.14 32.45 3345.05 3.08
3 453.15 0.14 32.45 3581.69 3.37
4 481.90 0.14 32.45 3766.76 2.77
5 366.40 0.14 32.45 3530.12 3.64
6 433.15 0.50 64.85 13088.21 2.31
7 480.09 0.50 64.85 13180.81 2.51
Tab.2  
Components Exergy loss/kW Performances Value
Distillation column 3.1893 QH (kW) 1.668
Recuperator 0.1174 W (kW) 0.248
Compressor 0.2150 COP 0.086
Exothermic reactor 0.2514 h 0.180
Tab.3  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Exergy loss COP h(Exergy efficiency)
Distillation column Recuperator Compressor Exothermic reactor
Without reactive distillation part 1.5104 0.0692 0.2514 0.2282 0.1517 0.3357
With reactive distillation part 1.0287 0.0692 0.2514 0.2282 0.1883 0.4137
Tab.4  
C Concentration/(mol?m-3)
COP Coefficient of performance
Ea Activation energy/(kJ?mol-1)
H Enthalpy/(kJ?mol-1)
Iirr Exergy loss/kW
k Chemical rate constant/(mol?gcat-1?h-1)
K Equilibrium adsorption constant
P Pressure/MPa
QC Heat of the condenser/kW
QH Heat released from the exothermicreactor/kW
QL Heat consumed by the endothermicreactor/kW
r Reaction rate/(mol?gcat-1?h-1)
R Gas constant/(J?mol-1?K-1)
S Entropy/(kJ?mol-1?K-1)
T Temperature/K
TH High temperature/K
TL Low temperature/K
T0 Environment temperature/K
W Energy input/kW
x Mole fraction in liquid phase
y Mole fraction in gas phase
Y Exergy destroged
η Exergy efficiency
ace Acetone
C Condenser
d Dehydrogenation
dis Distillation column
exo Exothermic reactor
feed Feed of the distillation column
H High temperature
in Inlet
iso Isopropanol
L Low temperature
out Outlet
  
1 Spoelstra S, Haije  W G, Dijkstra  J W. Techno-economic feasibility of high-temperature high-lift chemical heat pumps for upgrading industrial waste heat. Applied Thermal Engineering, 2002, 22(14): 1619–1630
https://doi.org/10.1016/S1359-4311(02)00077-7
2 Gandia L M, Montes  M. Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/H2/2-propanol. International Journal of Energy Research, 1992, 16(9): 851–864
https://doi.org/10.1002/er.4440160907
3 Kim T G, Yeo  Y K, Song  H K. Chemical heat pump based on dehydrogenation and hydrogenation of i-propanol and acetone. International Journal of Energy Research, 1992, 16(9): 897–916
https://doi.org/10.1002/er.4440160910
4 Chung Y, Jeong  H K, Song  H K, Park  W H. Modelling and simulation of the chemical reaction heat pump system adopting the reactive distillation process. Computers & Chemical Engineering, 1997, 21: S1007–S1012
https://doi.org/10.1016/S0098-1354(97)87634-X
5 KlinSoda I, Piumsomboon  P. Isopropanol-Acetone-Hydrogen chemical heat pump: a demonstration unit. Energy Conversion and Management, 2007, 48(4): 1200–1207
https://doi.org/10.1016/j.enconman.2006.10.006
6 Esen H, Inalli  M, Esen M ,  Pihtili K . Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers. Building and Environment, 2007, 42(10): 3606–3615
https://doi.org/10.1016/j.buildenv.2006.10.014
7 OzgenerO, Hepbasli A. A review on the energy and exergy analysis of solar assisted heat pump systems.Renewable & Sustainable Energy Reviews, 2007, 11(3): 482–496 doi:10.1016/j.rser.2004.12.010
8 Xu M, Xin  F, Li X ,  Huai X, Guo  J, Liu H . Equilibrium model and performances of Isopropanol-Acetone-Hydrogen chemical heat pump with reactive distillation column. Industrial & Engineering Chemistry Research, 2013, 52(11): 4040–4048
https://doi.org/10.1021/ie3028872
9 Kato Y, Nakagawa  N, Kameyama H . Study of Chemical heat pump with reaction couple of acetone hydrogenation/2-propanol dehydrogenation: kinetics of the hydrogenation of acetone. Kagaku Ronbunshu, 1987, 13(5): 714–717
https://doi.org/10.1252/kakoronbunshu.13.714
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed