Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 516-526   https://doi.org/10.1007/s11708-017-0511-5
  本期目录
Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust waste heat
Peng GAO, Liwei WANG(), Ruzhu WANG, Yang YU
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(518 KB)   HTML
Abstract

A solid sorption combined cooling and power system driven by exhaust waste heat is proposed, which consists of a MnCl2 sorption bed, a CaCl2 sorption bed, an evaporator, a condenser, an expansion valve, and a scroll expander, and ammonia is chosen as the working fluid. First, the theoretical model of the system is established, and the partitioning calculation method is proposed for sorption beds. Next, the experimental system is established, and experimental results show that the refrigerating capacity at the refrigerating temperature of –10°C and the resorption time of 30 min is 1.95 kW, and the shaft power is 109.2 W. The system can provide approximately 60% of the power for the evaporator fan and the condenser fan. Finally, the performance of the system is compared with that of the solid sorption refrigeration system. The refrigerating capacity of two systems is almost the same at the same operational condition. Therefore, the power generation process does not influence the refrigeration process. The exergy efficiency of the two systems is 0.076 and 0.047, respectively. The feasibility of the system is determined, which proves that this system is especially suitable for the exhaust waste heat recovery.

Key wordssolid sorption    exhaust waste heat    combined cooling and power system    exergy efficiency
收稿日期: 2017-08-15      出版日期: 2017-12-14
Corresponding Author(s): Liwei WANG   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 516-526.
Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU. Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust waste heat. Front. Energy, 2017, 11(4): 516-526.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0511-5
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/516
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
A Area/m2
B Space/m
C Specific heat/(kJ·kg?1·K?1)
E Exergy/W
H Enthalpy/(kJ·kg1)
L Latent heat/(J·mol1)
M Total mass/kg
m Mass flow rate/(kJ·s1)
n Molar number/mol
Q Heat transfer rate/W
r Radius/m
Re Reynolds number
Pr Prandtl number
T Temperature/K
t Time/s
V Volume/m3
W Power/W
X Conversion degree
η Conversion efficiency
ρ Density/(kg·m?3)
λ Thermal conductivity/(W·m1·K1)
ΔH Reaction heat/(J·mol1)
ΔS Entropy change/(J·mol1·K1)
a Convective heat transfer coefficient/(W·m2·K1)
S Internal heat source/W
ave Average
c Control
chilled air Chilled air that flows through theevaporator
cycle Cycle time
eq Equilibrium
exh Exhaust
exp Expander
f Fluid
fan Electric fans
heat Sorption/desorption heat
in Inlet
ins Instantaneous
NH3 Ammonia
out Outlet
ref Refrigerant
s Isentropic
sor Sorbent
tot Total
tube Unit tube
w Wall
AV Ammonia valve
COP Coefficient of performance
CV Air valve
EAV Expansion ammonia valve
EV Exhaust valve
ENG-TSA Expanded natural graphite treatedwith sulphuric acid
HTS High-temperature salt
min Minute
MTS Middle-temperature salt
SCP Specific cooling power per kilogramsorbent
  
1 Wang R Z, Oliveira  R G. Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy. Progress in Energy & Combustion Science, 2006, 32(4): 424–458
2 Fernandes M S, Brites G J V N, Costa J J, Gaspar  A R, Costa V A F. Review and future trends of solar adsorption refrigeration systems. Renewable & Sustainable Energy Reviews, 2014, 39(6): 102–123
3 Hamdy M, Askalany  A A, Harby  K, Kora N . An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renewable & Sustainable Energy Reviews, 2015, 51: 1223–1234
4 Zhong Y, Fang  T, Wert K L . An adsorption air conditioning system to integrate with the recent development of emission control for heavy-duty vehicles. Energy, 2011, 36(7): 4125–4135
https://doi.org/10.1016/j.energy.2011.04.032
5 Wu W D, Zhang  H, Men C L . Performance of a modified zeolite 13X-water adsorptive cooling module powered by exhaust waste heat. International Journal of Thermal Sciences, 2011, 50(10): 2042–2049
6 Sharafian A, Bahrami  M. Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration. Renewable & Sustainable Energy Reviews, 2014, 30(1): 440–451
7 Sharafian A, Mc Cague  C, Bahrami M . Impact of fin spacing on temperature distribution in adsorption cooling system for vehicle A/C applications. International Journal of Refrigeration, 2015, 51: 135–143
8 Sharafian A, Nemati Mehr  S M, Huttema  W, Bahrami M . Effects of different adsorber bed designs on in-situ water uptake rate measurements of AQSOA FAM-Z02 for vehicle air conditioning applications. Applied Thermal Engineering, 2016, 98: 568–574
9 Sharafian A, Nemati Mehr  S M, Thimmaiah  P C, Huttema  W, Bahrami M . Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications. Energy, 2016, 112: 481–493
10 Verde M, Harby  K, de Boer R ,  Corberán J M. Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I—Modeling and experimental validation. Energy, 2016, 116: 526–538
https://doi.org/10.1016/j.energy.2016.09.113
11 Verde M, Harby  K, de Boer R ,  Corberán J M . Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II— Performance optimization under different real driving conditions. Energy, 2016, 115(360–5442): 996–1009
12 Gao P, Zhang  X F, Wang  L W, Wang  R Z, Li  D P, Liang  Z W. Study on MnCl2/CaCl2–NH3 two-stage solid sorption freezing cycle for refrigerated trucks at low engine load in summer. Energy Conversion & Management, 2016, 109: 1–9
13 Gao P, Wang  L W, Wang  R Z, Zhang  X F, Li  D P, Liang  Z W. Experimental investigation of a MnCl2/CaCl2-NH3 two-stage solid sorption freezing system for a refrigerated truck. Energy, 2016, 103: 16–26
14 Gao P, Wang  L W, Wang  R Z, Li  D P, Liang  Z W. Optimization and performance experiments of a MnCl2/CaCl2–NH3 two-stage solid sorption freezing system for a refrigerated truck. International Journal of Refrigeration, 2016, 71: 94–107
15 Boretti A. Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine. Applied Thermal Engineering, 2012, 36(1): 73–77
16 Yang F, Dong  X, Zhang H ,  Wang Z, Yang  K, Zhang J ,  Wang E H ,  Liu H, Zhang  G Y. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions. Energy Conversion & Management, 2014, 80(2): 243–255
17 Wang L W, Roskilly  A P, Wang  R Z. Solar powered cascading cogeneration cycle with ORC and adsorption technology for electricity and refrigeration. Heat Transfer Engineering, 2014, 35(11–12): 1028–1034
18 Jiang L, Wang  L, Wang R ,  Gao P, Song  F. Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer. Energy, 2014, 71(12): 377–387
19 Jiang L, Wang  R Z, Wang  L W, Gao  P, Zhu F Q . Investigation on gradient thermal cycle for power and refrigeration cogeneration. International Journal of Refrigeration, 2017, 76: 42–51
20 Wang L, Ziegler  F, Roskilly A P ,  Wang R Z ,  Wang Y. A resorption cycle for the cogeneration of electricity and refrigeration. Applied Energy, 2013, 106(106): 56–64
21 Bao H, Wang  Y, Charalambous C ,  Lu Z, Wang  L, Wang R Z . Chemisorption cooling and electric power cogeneration system driven by low grade heat. Energy, 2014, 72(7): 590–598
22 Bao H, Wang  Y, Roskilly A P . Modelling of a chemisorption refrigeration and power cogeneration system. Applied Energy, 2014, 119(12): 351–362
23 Lu H B, Mazet  N, Spinner B . Modelling of gas-solid reaction—coupling of heat and mass transfer with chemical reaction. Chemical Engineering Science, 1996, 51(15): 3829–3845
24 Neveu P, Castaing  J. Solid-gas chemical heat pumps: field of application and performance of the internal heat of reaction recovery process. Heat Recovery Systems & Chp, 1993, 13(3): 233–251
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed