Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 503-509   https://doi.org/10.1007/s11708-017-0515-1
  本期目录
Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery
Zhiwei MA, Huashan BAO(), Anthony Paul ROSKILLY
Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
 全文: PDF(339 KB)   HTML
Abstract

The present paper aims at exploring a hybrid absorption-compression heat pump (HAC-HP) to upgrade and recover the industrial waste heat in the temperature range of 60°C–120°C. The new HAC-HP system proposed has a condenser, an evaporator, and one more solution pump, compared to the conventional HAC-HP system, to allow flexible utilization of energy sources of electricity and waste heat. In the system proposed, the pressure of ammonia-water vapor desorbed in the generator can be elevated by two routes; one is via the compression of compressor while the other is via the condenser, the solution pump, and the evaporator. The results show that more ammonia-water vapor flowing through the compressor leads to a substantial higher energy efficiency due to the higher quality of electricity, however, only a slight change on the system exergy efficiency is noticed. The temperature lift increases with the increasing system recirculation flow ratio, however, the system energy and exergy efficiencies drop towards zero. The suitable operation ranges of HAC-HP are recommended for the waste heat at 60°C, 80°C, 100°C, and 120°C. The recirculation flow ratio should be lower than 9, 6, 5, and 4 respectively for these waste heat, while the temperature lifts are in the range of 9.8°C–27.7 °C, 14.9°C–44.1 °C, 24.4°C–64.1°C, and 40.7°C–85.7°C, respectively, and the system energy efficiency are 0.35–0.93, 0.32–0.90, 0.25–0.85, and 0.14–0.76.

Key wordsabsorption compression    high temperature heat pump    efficiency    industrial waste heat    thermodynamic analysis
收稿日期: 2017-06-14      出版日期: 2017-12-14
Corresponding Author(s): Huashan BAO   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 503-509.
Zhiwei MA, Huashan BAO, Anthony Paul ROSKILLY. Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery. Front. Energy, 2017, 11(4): 503-509.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0515-1
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/503
Fig.1  
Fig.2  
Parameter Value
Twas/°C 60–120
FR 1–20*
Rref 0–1
Rrefl 2
hpump1, hpump2 0.85
hcom 0.75
UA/(W·K1) 1000
wref 0.9995
?ref /(kg·s1) 0.01
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Waste heat temperature/°C Recommended FR Energy efficiency Exergy efficiency Useful heat/kW Temperature lift/°C
60 <9 0.35–0.93 0.55–0.67 7.2–11.7 9.8–27.7
80 <6 0.32–0.90 0.50–0.61 7.3–11.9 14.9–44.1
100 <5 0.25–0.85 0.37–0.56 5.7–11.9 24.4–64.1
120 <4 0.14–0.76 0.21–0.50 3.5–11.2 40.7–85.7
Tab.2  
FR Recirculation flow ratio
h Enthalpy/(J·kg?1)
? Mass flow rate/(kg·s1)
P Pressure/Pa
Q? Heat power/W
R Ratio
T Temperature/°C
DTLMTD Logarithmic mean temperature difference/°C
UA Heat exchanger performance/(W·K1)
w Mass fraction
? Electric power/W
h Efficiency
Subscripts
abs Absorption
amb Ambient
bas Basic
com Compressor
en Energy
eva Evaporation
ex Exergy
gen Generator
H High pressure
HE Heat exchanger
l Liquid
L Low pressure
min Minimum
pole Pole
pump Pump
rec Rectifier
ref Refrigerant
refl Reflux
s Isentropic
use Useful
v Vapor
was Waste
  
1 Vélez F, Segovia  J J, Martin  M C, Antolin  G, Chejne F ,  Quijano A . A technical, economical and market review of organic Rankine cycles for the conversion of low grade heat for power generation. Renewable & Sustainable Energy Reviews, 2012, 16(6): 4175–4189
https://doi.org/10.1016/j.rser.2012.03.022
2 Zhai X Q, Qu  M, Li Y ,  Wang R Z . A review for research and new design options of solar absorption cooling systems. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4416–4423
https://doi.org/10.1016/j.rser.2011.06.016
3 Li T X, Wang  R Z, Li  H. Progress in the development of solid-gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Progress in Energy and Combustion Science, 2014, 40: 1–58
https://doi.org/10.1016/j.pecs.2013.09.002
4 Oluleye G, Smith  R, Jobson M . Modelling and screening heat pump options for the exploitation of low grade waste heat in process site. Applied Energy, 2016, 169: 267–286
https://doi.org/10.1016/j.apenergy.2016.02.015
5 Chua K J, Chou  S K, Yang  W M. Advances in heat pump systems: a review. Applied Energy, 2010, 87(12): 3611–3624
https://doi.org/10.1016/j.apenergy.2010.06.014
6 Brunin O, Feidt  M, Hivet B . Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration, 1997, 20(5): 308–318
https://doi.org/10.1016/S0140-7007(97)00025-X
7 Hultén M, Berntsson  T. The compression/absorption cycle—influence of some major parameters on COP and a comparison with the compression cycle. International Journal of Refrigeration, 1999, 22(2): 91–106
https://doi.org/10.1016/S0140-7007(98)00047-4
8 Minea V, Chiriac  F. Hybrid absorption heat pump with ammonia/water mixture—some design guidelines and district heating application. International Journal of Refrigeration, 2006, 29(7): 1080–1091
https://doi.org/10.1016/j.ijrefrig.2006.03.007
9 Kim J, Park  S R, Baik  Y J, Chang  K C, Ra  H S, Kim  M, Kim C . Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat. Renewable Energy, 2013, 54: 13–19
https://doi.org/10.1016/j.renene.2012.09.032
10 Jensen J K, Markussen  W B, Reinholdt  L, Elmegaard B . On the development of high temperature ammonia-water hybrid absorption-compression heat pumps. International Journal of Refrigeration, 2015, 58: 79–89
https://doi.org/10.1016/j.ijrefrig.2015.06.006
11 Jensen J K, Markussen  W B, Reinholdt  L, Elmegaard B . Exergoeconomic optimization of an ammonia-water hybrid absorption-compression heat pump for heat supply in a spray-drying facility. International Journal of Environmental Engineering, 2015, 6: 195–211
12 Bourouis M, Nogues  M, Boer D ,  Coronas A . Industrial heat recovery by absorption/compression heat pump using TFE-H2O-TEGDME working mixture. Applied Thermal Engineering, 2000, 20(4): 355–369
https://doi.org/10.1016/S1359-4311(99)00023-X
13 El-sayed Y M, Tribus  M. Thermodynamic properties of water-ammonia mixtures theoretical implementation for use in power cycles analysis.  American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication), 1985, 1: 89–95
14 Ziegler B, Trepp  C. Equation of state for ammonia-water mixtures. International Journal of Refrigeration, 1984, 7(2): 101–106
https://doi.org/10.1016/0140-7007(84)90022-7
15 Herold K E, Radermacher  R, Klein S A . Absorption Chillers and Heat Pumps. Boca Raton: CRC Press, 1996
16 Wu W, Wang  B L, Shi  W X, Li  X T. Performance improvement of ammonia/absorbent air source absorption heat pump in cold regions. Building Services Engineering Research and Technology, 2014, 35(5): 451–464
https://doi.org/10.1177/0143624413505750
17 Kandlikar S. A new absorber heat recovery cycle to improve COP of aqua-ammonia absorption refrigeration system. Ashrae Transactions, 1982, 88: 141–158
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed