Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 527-534   https://doi.org/10.1007/s11708-017-0516-0
  本期目录
Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery
Yiji LU1(), Anthony Paul ROSKILLY1, Long JIANG2, Longfei CHEN3(), Xiaoli YU4
1. Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle NE1 7RU, UK
2. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
3. School of Energy and Power Engineering, Beihang University, Beijing 100191, China
4. Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(603 KB)   HTML
Abstract

The development of engine waste heat recovery technologies attracts ever increasing interests due to the rising strict policy requirements and environmental concerns. This paper presented the study of engine coolant and exhaust heat recovery using organic Rankine cycle (ORC). Eight working fluids were selected to evaluate and compare the performance of the integrated waste heat recovery system. Rather than the conventional engine ORC system mainly focusing on the utilization of exhaust energy, this work proposed to fully use the engine coolant energy by changing the designed parameters of the ORC system. The case study selected a small engine as the heat source to drive the ORC system using a scroll expander for power production. The evaluation results suggest that under the engine rated condition, the solution to fully recover the engine coolant energy can achieve a higher power generation performance than that of the conventional engine ORC system. The results suggest that adding a recuperator to the ORC system can potentially improve the system performance when the working fluids are dry and the overall dumped heat demand of the system can be reduced by 12% under optimal conditions. When the ORC evaporating and condensing temperature are respectively set at 85°C and 30°C, the integrated engine waste heat recovery system can improve the overall system efficiency by 9.3% with R600, R600a or n-Pentane as the working fluid.

Key wordsorganic Rankine cycle    scroll expander    coolant and exhaust recovery    internal combustion engine
收稿日期: 2017-07-31      出版日期: 2017-12-14
Corresponding Author(s): Yiji LU,Longfei CHEN   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 527-534.
Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU. Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery. Front. Energy, 2017, 11(4): 527-534.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0516-0
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/527
Fig.1  
Characteristic Value
Engine displacement/L 0.638
Cylinder bore/mm 92
Cylinder stroke/mm 96
Compression ratio 17.7
Max torque (at 1800 r/min) /(N·m) 43.35
Max power (at 2400 r/min)/kW 8.818
Coolant heat at rated power/kW 4.54
Exhaust heat at rated power/kW 4.67
Exhaust temperature at rated power/°C 587
Fuel consumption at rated power/(kg?h−1) 1.975
Tab.1  
Fig.2  
Parameter Value
Fluid superheated temperature/°C 5
Efficiency of heat exchangers and expander ( ηHeater 1,   ηHeater2 , η r , η exp ?) 0.8
Pump isentropic efficiency, ηpump 0.4
Maximum evaporating temperature provided from coolantenergy/°C 85
Temperature of condenser, T8 /°C 30
Tab.2  
M/(g?mol−1) Tc/K Pc/MPa Vapor Cp/(J?kg−1?K−1) Latent heat L/(kJ?kg−1) Boiling point/K Type GWP/a ODP AL
/a
R245fa 134.05 427.20 3.64 980.90 177.08 288.4 Dry 1030 0 7.6
Toluene 92.14 591.75 4.13 1223.90 399.52 383.75 Dry n.a n.a n.a
n-Pentane 72.15 469.15 3.36 1824.12 349.00 309.25 Dry 0.1 0 n.a
R134a 102.03 374.21 4.06 1211.51 155.42 247.05 Isentropic 1430 0 14
R152a 66.05 386.41 4.52 1456.02 249.67 249.15 Wet 124 0 1.4
R600 58.12 425.13 3.80 1965.59 336.82 272.65 Dry 20 0 0.018
R600a 58.12 409.81 3.63 1981.42 303.44 261.45 Dry 20 0 0.019
R124 136.48 395.43 3.62 908.70 132.97 261.1 Dry 609 0.022 5.8
Tab.3  
Fig.3  
Fig.4  
Fig.5  
1 Sprouse C III ,  Depcik C . Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering, 2013, 51(1–2): 711–722 
https://doi.org/10.1016/j.applthermaleng.2012.10.017
2 Wang T, Zhang  Y, Peng Z ,  Shu G. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable & Sustainable Energy Reviews, 2011, 15(6): 2862–2871
https://doi.org/10.1016/j.rser.2011.03.015
3 Vélez F, Segovia  J J, Martín  M C, Antolín  G, Chejne F ,  Quijano A . A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable & Sustainable Energy Reviews, 2012, 16(6): 4175–4189
https://doi.org/10.1016/j.rser.2012.03.022
4 Lu Y, Wang  Y, Dong C ,  Wang L, Roskilly  A P. Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine. Applied Thermal Engineering, 2015, 91: 591–599
https://doi.org/10.1016/j.applthermaleng.2015.08.057
5 Quoilin S, Broek  M V D, Declaye  S, Dewallef P ,  Lemort V . Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable & Sustainable Energy Reviews, 2013, 22: 168–186
https://doi.org/10.1016/j.rser.2013.01.028
6 Yu G, Shu  G, Tian H ,  Wei H, Liu  L. Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy, 2013, 51: 281–290
https://doi.org/10.1016/j.energy.2012.10.054
7 Wang E H, Zhang  H G, Zhao  Y, Fan B Y ,  Wu Y T ,  Mu Q H . Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine. Energy, 2012, 43(1): 385–395
https://doi.org/10.1016/j.energy.2012.04.006
8 Wang E H, Zhang  H G, Fan  B Y, Ouyang  M G, Yang  F Y, Yang  K, Wang Z ,  Zhang J ,  Yang F B . Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine. Applied Thermal Engineering, 2014, 67(1–2): 168–178
https://doi.org/10.1016/j.applthermaleng.2014.03.023
9 Wang E H, Zhang  H G, Fan  B Y, Ouyang  M G, Zhao  Y, Mu Q H . Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy, 2011, 36(5): 3406–3418
https://doi.org/10.1016/j.energy.2011.03.041
10 Saleh B, Koglbauer  G, Wendland M ,  Fischer J . Working fluids for low-temperature organic Rankine cycles. Energy, 2007, 32(7): 1210–1221
https://doi.org/10.1016/j.energy.2006.07.001
11 Bao J, Zhao  L. A review of working fluid and expander selections for organic Rankine cycle. Renewable & Sustainable Energy Reviews, 2013, 24(0): 325–342
https://doi.org/10.1016/j.rser.2013.03.040
12 Chen H, Goswami  D Y, Stefanakos  E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Reviews, 2010, 14(9): 3059–3067
https://doi.org/10.1016/j.rser.2010.07.006
13 Lu Y, Wang  L, Tian G ,  Roskilly A P . Study on a small scale solar powered Organic Rankine Cycle utilizing scroll expander. International Conference on Applied Energy. Suzhou, China, 2012
14 Lu Y, Roskilly  A P, Jiang  L, Yu X . Working fluid selection for a small-scale Organic Rankine Cycle recovering engine waste heat. Energy Procedia, 2017, 123: 346–352
https://doi.org/10.1016/j.egypro.2017.07.266
15 Lu Y, Roskilly  A P, Smallbone  A, Yu X ,  Wang Y. Design and parametric study of an Organic Rankine Cycle using a scroll expander for engine waste heat recovery. Energy Procedia, 2017, 105: 1420–1425
https://doi.org/10.1016/j.egypro.2017.03.530
16 Song P, Wei  M, Shi L ,  Danish S N ,  Ma C. A review of scroll expanders for organic Rankine cycle systems. Applied Thermal Engineering, 2014, 75: 54–64
17 Quoilin S, Lemort  V, Lebrun J . Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Applied Energy, 2010, 87(4): 1260–1268
https://doi.org/10.1016/j.apenergy.2009.06.026
18 Declaye S, Quoilin  S, Guillaume L ,  Lemort V . Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy, 2013, 55: 173–183
https://doi.org/10.1016/j.energy.2013.04.003
19 Lu Y, Roskilly  A P, Yu  X, Tang K ,  Jiang L ,  Smallbone A ,  Chen R F ,  Wang Y D . Parametric study for small scale engine coolant and exhaust heat recovery system using different Organic Rankine cycle layouts. Applied Thermal Engineering, 2017, 127: 1252–1266
https://doi.org/10.1016/j.applthermaleng.2017.08.128
20 Yu H D. The design, testing and analysis of a biofuel micro-trigeneration system. Mikrochimica Acta, 2013, 180(5–6): 423–430
21 Muhammad U, Imran  M, Lee D H ,  Park B S . Design and experimental investigation of a 1 kW Organic Rankine Cycle system using R245fa as working fluid for low-grade waste heat recovery from steam. Energy Conversion and Management, 2015, 103: 1089–1100
https://doi.org/10.1016/j.enconman.2015.07.045
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed