Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2018, Vol. 12 Issue (2): 259-275   https://doi.org/10.1007/s11708-017-0521-3
  本期目录
液态金属组合传热学:面向超常规极端冷却
杨小虎1,2, 刘静1,2,3()
1. 中国科学院理化技术研究所,中国科学院低温工程学重点实验室,低温生物医学工程学北京市重点实验室,北京 100190,中国
2. 中国科学院大学,未来技术学院,北京 100049,中国
3. 清华大学,医学院生物医学工程系,北京 100084,中国
Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling
Xiao-Hu YANG1, Jing LIU2()
1. Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
2. Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
 全文: PDF(766 KB)   HTML
摘要:

作为一大类新兴的多功能材料,液态金属在热管理技术领域诸多方面均展现出优异的性能和巨大的应用前景,比如液态金属热界面材料、液态金属热展开器、液态金属对流冷却以及低熔点金属相变储能与热控技术等。为了指导下一代新型液态金属冷却技术的开发,以应对更加极端和复杂的冷却需求,这里,我们提出了液态金属组合传热学的概念。通过对典型的热管理技术的抽象划分和归纳总结,我们提炼出了一种构筑基于液态金属的复合式热管理技术的一般方法和原则,并就其中涉及到的关键科学问题和技术难点做了阐述。具体而言,可以将热管理系统抽象划分为五个环节,液态金属热管理技术可以根据应用场合的不同而在其中的一些主要环节中发挥关键性作用,从而实现与传统热管理技术的优势互补、取长补短,实现高性能高性价比的热管理技术方案。本文提出的液态金属组合传热学理念可望在构建新型复杂热管理系统和应对超常规极端冷却需求方面提供最基本的指导思路。

Abstract

As a class of newly emerging material, liquid metal exhibits many outstanding performances in a wide variety of thermal management areas, such as thermal interface material, heat spreader, convective cooling and phase change material (PCM) for thermal buffering etc. To help mold next generation unconventional cooling technologies and further advance the liquid metal cooling to an ever higher level in tackling more extreme, complex and critical thermal issues and energy utilizations, a novel conceptual scientific category was dedicated here which could be termed as combinatorial liquid metal heat transfer science. Through comprehensive interpretations on a group of representative liquid metal thermal management strategies, the most basic ways were outlined for developing liquid metal enabled combined cooling systems. The main scientific and technical features of the proposed hybrid cooling systems were illustrated. Particularly, five abstractive segments toward constructing the combinatorial liquid metal heat transfer systems were clarified. The most common methods on innovating liquid metal combined cooling systems based on this classification principle were discussed, and their potential utilization forms were proposed. For illustration purpose, several typical examples such as low melting point metal PCM combined cooling systems and liquid metal convection combined cooling systems, etc. were specifically introduced. Finally, future prospects to search for and make full use of the liquid metal combined high performance cooling system were discussed. It is expected that in practical application in the future, more unconventional combination forms on the liquid metal cooling can be obtained from the current fundamental principles.

Key wordscombinatorial heat transfer    liquid metal    high flux cooling    thermal management
收稿日期: 2017-06-14      出版日期: 2018-06-04
通讯作者: 刘静     E-mail: jliubme@tsinghua.edu.cn
Corresponding Author(s): Jing LIU   
 引用本文:   
杨小虎, 刘静. 液态金属组合传热学:面向超常规极端冷却[J]. Frontiers in Energy, 2018, 12(2): 259-275.
Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling. Front. Energy, 2018, 12(2): 259-275.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0521-3
https://academic.hep.com.cn/fie/CN/Y2018/V12/I2/259
Fig.1  
Fig.2  
Fig.3  
Fig.4  
PCM Melting point Tm/°C Thermal conductivity k/(W·m?1·°C?1) Density ρ/(kg·m?3) Latent heat ΔH/(kJ·kg?1) FOM ΔH/(106 W2s·°C?1·m?4)
Octadecane [60] 28.2 0.148 770 243.52 28
Gallium [61] 29.78 33.68 6094.7 80.16 16454
n-Eicosane [101] 36.5 0.157 770 237.4 29
Paraffin RT44 [102] 41-45 0.2 760 255.0 39
Octadecanol [59] 55.6 0.175 894 239.7 38
Bi49In21Pb18Sn12 [59] 58.2 10.1 9307 23.4 2200
Bi31.6In48.8Sn19.6 [64] 60.2 14.5 8043 27.9 3254
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Material Density ρ/(kg·m3) Heat capacity cp/(J·kg 1·K ?1) Viscosity μ/(103 kg·m1·s1) Thermal conductivity k/(W·m1·K 1) Melting point Tm/°C
Watera [108] 998 4182 1.003 0.6 0
Hg [109] 13564 139 1.56 8.7 -38.9
Na27K73 [109] 868 982 0.91 21.8 -11
Ga61In25Sn13Zn1

America Indium Corporation. Physical property data for indalloy alloys. 2003

6500 15 7.6
Ga68In20Sn12

America Indium Corporation. Physical property data for indalloy alloys. 2003

6363 366 2.22 16.5 10.7
Ga80In20 [34] 6335 404 26.6 16
Ga [61] 6095 398 1.75 33.7 29.8
Tab.2  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
A Heat transfer area/m2
cp Specific heat capacity/(J·kg1·K1)
H Heat transfer coefficient/(W·m−2·K−1)
ΔH Fusion latent heat/(J·kg1)
K Thermal conductivity/(W·m1·K1)
Q Heat transfer rate/W
q Heat flux/(W·m2)
R Thermal resistance/(K·W1)
T Temperature/K
Tm Melting point/°C
ΔTm Average temperature difference/K
t Time/s
Greek letters
η Fin efficiency
μ Viscosity/(kg·s1·m1)
ρ Mass density/(kg·m?3)
σ Boltzmann constant
Abbreviation
FOM Figure of merit
LM Liquid metal
LMPM Low melting point metal
MFD Magnetofluid dynamic
PCM Phase change material
TEC Thermoelectric cooling
TEG Thermoelectric generator
TIM Thermal interface material
VCC Vapor compression cycle
Subscripts
a Additional heat
am Ambience
cond Conduction
cont Contact
conv Convection
ha Heat acquisition segment
hr Heat rejection segment
hs Heat source
ht Heat transport segment
spread Spreading
  
1 Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530(7589): 144–147
https://doi.org/10.1038/530144a
2 Theis T N, Wong H S P. The end of Moore’s law: a new beginning for information technology. Computing in Science & Engineering, 2017, 19(2): 41–50
https://doi.org/10.1109/MCSE.2017.29
3 Sohel Murshed S M, Nieto de Castro C A. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable & Sustainable Energy Reviews, 2017, 78: 821–833
https://doi.org/10.1016/j.rser.2017.04.112
4 Agostini B, Fabbri M, Park J E, Wojtan L, Thome J R, Michel B. State of the art of high heat flux cooling technologies. Heat Transfer Engineering, 2007, 28(4): 258–281
https://doi.org/10.1080/01457630601117799
5 Luo X, Hu R, Liu S, Wang K. Heat and fluid flow in high-power LED packaging and applications. Progress in Energy and Combustion Science, 2016, 56: 1–32
https://doi.org/10.1016/j.pecs.2016.05.003
6 Bachmann F, Poprawe R, Loosen P. High Power Diode Lasers. New York: Springer, 2007
7 Alpsan E. Experimental investigation and numerical analysis of microchannel heatsinks for phased array radar cooling applications. Dissertation for the Master’s Degree. Ankara, Turkey: Middle East Technical University, 2008
8 Kim H, Wi H, Park S, Seon S, Hong Y, Kim J, Choi S. RF test and thermal analysis on high power water load for 30 kW microwave of 2450 MHz applications. In: IEEE International Conference on Plasma Science, 2016, 18
9 Jakhar S, Soni M S, Gakkhar N. Historical and recent development of concentrating photovoltaic cooling technologies. Renewable & Sustainable Energy Reviews, 2016, 60: 41–59
https://doi.org/10.1016/j.rser.2016.01.083
10 Bahman A S, Blaabjerg F. Optimization tool for direct water cooling system of high power IGBT modules. In: European Conference on Power Electronics and Applications, 2016, 1–10
11 Wang C C. A quick overview of compact air-cooled heat sinks applicable for electronic cooling-recent progress. Inventions, 2017, 2(1): 5–31
https://doi.org/10.3390/inventions2010005
12 Faghri A. Heat pipes: review, opportunities and challenges. Frontiers in Heat Pipes, 2014, 5(1): 1–48
https://doi.org/10.5098/fhp.5.1
13 Sharma C S, Schlottig G, Brunschwiler T, Tiwari M K, Michel B, Poulikakos D. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study. International Journal of Heat and Mass Transfer, 2015, 88: 684–694
https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.047
14 Xie X, Liu Z, He Y, Tao W. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Applied Thermal Engineering, 2009, 29(1): 64–74
https://doi.org/10.1016/j.applthermaleng.2008.02.002
15 Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Applied Thermal Engineering, 2016, 107: 870–879
https://doi.org/10.1016/j.applthermaleng.2016.07.039
16 Yang F, Dai X, Peles Y, Cheng P, Khan J, Li C. Flow boiling phenomena in a single annular flow regime in microchannels (I): characterization of flow boiling heat transfer. International Journal of Heat and Mass Transfer, 2014, 68: 703–715
https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.058
17 Sun Y, Wang Y, Zhu L, Yin B, Xiang H, Huang Q. Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver. Energy, 2014, 65: 264–271
https://doi.org/10.1016/j.energy.2013.11.063
18 Bahaidarah H M. Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics. Solar Energy, 2016, 135: 605–617
https://doi.org/10.1016/j.solener.2016.06.015
19 Hsieh C C, Yao S C. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces. International Journal of Heat and Mass Transfer, 2006, 49(5–6): 962–974
https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.013
20 Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(S1–2): 15–24
21 Catano J, Zhang T, Wen J T, Jensen M K, Peles Y. Vapor compression refrigeration cycle for electronics cooling–Part I: dynamic modeling and experimental validation. International Journal of Heat and Mass Transfer, 2013, 66: 911–921
https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.075
22 Catano J, Lizarralde F, Zhang T, Wen J T, Jensen M K, Peles Y. Vapor compression refrigeration cycle for electronics cooling–Part II: gain-scheduling control for critical heat flux avoidance. International Journal of Heat and Mass Transfer, 2013, 66: 922–929
https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.074
23 Jaworski M. Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Applied Thermal Engineering, 2011, 35(1): 212–219
24 Azizi Y, Sadrameli S. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates. Energy Conversion and Management, 2016, 128: 294–302
https://doi.org/10.1016/j.enconman.2016.09.081
25 Shao L, Raghavan A, Kim G H, Emurian L, Rosen J, Papaefthymiou M C, Wenisch T F, Martin M M, Pipe K P. Figure-of-merit for phase-change materials used in thermal management. International Journal of Heat and Mass Transfer, 2016, 101: 764–771
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.040
26 Wu Y, Tang Y, Li Z, Ding X, Yuan W, Zhao X, Yu B. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs. Applied Thermal Engineering, 2016, 108: 192–203
https://doi.org/10.1016/j.applthermaleng.2016.07.127
27 Liu J, Zhou Y. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent, 2002, 2131419
28 Li T, Lv Y G, Liu J. Computer chip cooling method using low melting point liquid metal or its alloy as the cooling fluid. In: Annual Heat and Mass Transfer Conference of the Chinese Society of Engineering Thermophysics, 2004, 1: 115–118
29 Liu J, Zhou Y X, Lv Y G, Li T. Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. In: ASME 2005 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2005, 501–510
30 Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Applied Physics Letters, 2004, 85(3): 506–508
https://doi.org/10.1063/1.1772862
31 Ghoshal U, Grimm D, Ibrani S, Johnston C, Miner A. High-performance liquid metal cooling loops. In: 21st IEEE SEMI-THERM Symposium, 2005, 1–4
32 Ma K Q, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. Journal of Physics. D, Applied Physics, 2007, 40(15): 4722–4729
https://doi.org/10.1088/0022-3727/40/15/055
33 Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters [Part A], 2007, 361(3): 252–256
https://doi.org/10.1016/j.physleta.2006.09.041
34 Deng Y, Liu J. Hybrid liquid metal–water cooling system for heat dissipation of high power density microdevices. Heat and Mass Transfer, 2010, 46(11–12): 1327–1334
https://doi.org/10.1007/s00231-010-0658-7
35 Deng Y, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. Journal of Electronic Packaging, 2010, 132(3): 031009
https://doi.org/10.1115/1.4002012
36 Deng Y, Liu J. A liquid metal cooling system for the thermal management of high power LEDs. International Communications in Heat and Mass Transfer, 2010, 37(7): 788–791
https://doi.org/10.1016/j.icheatmasstransfer.2010.04.011
37 Deng Y, Liu J. Heat spreader based on room-temperature liquid metal. ASME Journal of Thermal Science and Engineering Applications, 2012, 4(2): 024501
https://doi.org/10.1115/1.4006274
38 Luo M, Zhou Y, Liu J. Blade heat dissipator with room-temperature liquid metal running inside a sheet of hollow chamber. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2014, 4(3): 459–464
https://doi.org/10.1109/TCPMT.2013.2289736
39 Vetrovec J. Quasi-passive heat sink for high-power laser diodes. In: Zediker M S ed. SPIE Proceedings, High-Power Diode Laser Technology and Applications VII, 2009, 7198
40 Vetrovec J, Litt A S, Copeland D A, Junghans J, Durkee R. Liquid metal heat sink for high-power laser diodes. In: SPIE LASE International Society for Optics and Photonics, 2013, 86050E–86050E–86057
41 Vetrovec J. Engine cooling system with overload handling capability. Google Patents, 2010
42 Vetrovec J. High-performance heat sink for interfacing hybrid electric vehicles inverters to engine coolant loop. SAE Technical Paper, 2011, 0148–7191
43 Deng Y G, Liu J, Zhou Y X. Liquid metal based mini/micro channel cooling device. In: ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, 2009, 253–259
44 Hodes M, Zhang R, Wilcoxon R, Lower N. Cooling potential of galinstan-based minichannel heat sinks. In: 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2012, 297–302
45 Luo M, Liu J. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices. Frontiers in Energy, 2013, 7(4): 479–486
https://doi.org/10.1007/s11708-013-0277-3
46 Hodes M, Zhang R, Lam L S, Wilcoxon R, Lower N. On the potential of galinstan-based minichannel and minigap cooling. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2014, 4(1): 46–56
https://doi.org/10.1109/TCPMT.2013.2274699
47 Liu N, Jin Y, Miao M, Cui X. Optimization of heat transfer of microchannels in LTCC substrate with via holes and liquid metal. In: 17th International Conference on Electronic Packaging Technology (ICEPT), IEEE, 2016, 1135–1139
48 Liu Y, Chen H, Zhang H, Li Y. Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant. International Journal of Heat and Mass Transfer, 2015, 80: 605–613
https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.058
49 Yang X H, Tan S C, Ding Y J, Liu J. Flow and thermal modeling and optimization of micro/mini-channel heat sink. Applied Thermal Engineering, 2017, 117: 289–296
https://doi.org/10.1016/j.applthermaleng.2016.12.089
50 Li H, Liu J. Revolutionizing heat transport enhancement with liquid metals: proposal of a new industry of water-free heat exchangers. Frontiers in Energy, 2011, 5(1): 20–42
https://doi.org/10.1007/s11708-011-0139-9
51 Li P, Liu J. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Applied Physics Letters, 2011, 99(9): 094106
https://doi.org/10.1063/1.3635393
52 Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. ASME Journal of Electronic Packaging, 2011, 133(4): 041009
https://doi.org/10.1115/1.4005297
53 Li P, Liu J, Zhou Y. Design of a self-driven liquid metal cooling device for heat dissipation of hot chips in a closed cabinet. Journal of Thermal Science and Engineering Applications, 2013, 6(1): 011009
https://doi.org/10.1115/1.4024786
54 Gao Y, Liu J. Gallium-based thermal interface material with high compliance and wettability. Applied Physics. A, Materials Science & Processing, 2012, 107(3): 701–708
https://doi.org/10.1007/s00339-012-6887-5
55 Ge H, Li H, Mei S, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renewable & Sustainable Energy Reviews, 2013, 21: 331–346
https://doi.org/10.1016/j.rser.2013.01.008
56 Ge H, Liu J. Phase change effect of low melting point metal for an automatic cooling of USB flash memory. Frontiers in Energy, 2012, 6(3): 207–209
https://doi.org/10.1007/s11708-012-0204-z
57 Ge H, Liu J. Keeping smartphones cool with gallium phase change material. ASME Journal of Heat Transfer, 2013, 135(5): 054503
https://doi.org/10.1115/1.4023392
58 Li Z, Lv L, Li J. Combination of heat storage and thermal spreading for high power portable electronics cooling. International Journal of Heat and Mass Transfer, 2016, 98: 550–557
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.068
59 Fan L W, Wu Y Y, Xiao Y Q, Zeng Y, Zhang Y L, Yu Z T. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material. Applied Thermal Engineering, 2016, 109: 746–750
https://doi.org/10.1016/j.applthermaleng.2016.08.137
60 Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. International Journal of Heat and Mass Transfer, 2016, 102: 1159–1168
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.010
61 Yang X H, Tan S C, Liu J. Numerical investigation of the phase change process of low melting point metal. International Journal of Heat and Mass Transfer, 2016, 100: 899–907
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.109
62 Yang X H, Tan S C, He Z Z, Zhou Y X, Liu J. Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Applied Thermal Engineering, 2017, 119: 34–41
https://doi.org/10.1016/j.applthermaleng.2017.03.050
63 Fleischer A S. Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications. Berlin: Springer, 2015
64 Yang X H, Tan S C, Ding Y J, Wang L, Liu J, Zhou Y X. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. International Communications in Heat and Mass Transfer, 2017, 87: 118–124
https://doi.org/10.1016/j.icheatmasstransfer.2017.07.001
65 Tan S C, Zhou Y X, Wang L, Liu J. Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution. Science China, Technological Sciences, 2016, 59(2): 301–308
https://doi.org/10.1007/s11431-015-5943-8
66 Yang X H, Tan S C, Yuan B, Liu J. Alternating electric field actuated oscillating behavior of liquid metal and its application. Science China, Technological Sciences, 2016, 59(4): 597–603
https://doi.org/10.1007/s11431-016-6026-1
67 Tang J, Wang J, Liu J, Zhou Y. A volatile fluid assisted thermo-pneumatic liquid metal energy harvester. Applied Physics Letters, 2016, 108(2): 023903
https://doi.org/10.1063/1.4939829
68 Bergman T L, Incropera F P, Lavine A S. Fundamentals of Heat and Mass Transfer. Hoboke: John Wiley & Sons, 2011.
69 Lee S, Song S, Au V, Moran K P. Constriction/spreading resistance model for electronics packaging. In: Proceedings of the 4th ASME/JSME Thermal Engineering Joint Conference, 1995, 199–206
70 Wei J. Challenges in cooling design of CPU packages for high-performance servers. Heat Transfer Engineering, 2008, 29(2): 178–187
https://doi.org/10.1080/01457630701686727
71 Sauciuc I, Chrysler G, Mahajan R, Prasher R. Spreading in the heat sink base: phase change systems or solid metals? IEEE Transactions on Components and Packaging Technologies, 2002, 25(4): 621–628
https://doi.org/10.1109/TCAPT.2002.807994
72 Hsieh S S, Lee R Y, Shyu J C, Chen S W. Thermal performance of flat vapor chamber heat spreader. Energy Conversion and Management, 2008, 49(6): 1774–1784
https://doi.org/10.1016/j.enconman.2007.10.024
73 Li H Y, Chiang M H, Lee C I, Yang W J. Thermal performance of plate-fin vapor chamber heat sinks. International Communications in Heat and Mass Transfer, 2010, 37(7): 731–738
https://doi.org/10.1016/j.icheatmasstransfer.2010.05.015
74 Lee H S. Thermal Design: Heat Sinks, Thermoelectrics, Heat pipes, Compact Heat Exchangers, and Solar Cells. Hoboke: John Wiley & Sons, 2010.
75 Li H Y, Chao S M. Measurement of performance of plate-fin heat sinks with cross flow cooling. International Journal of Heat and Mass Transfer, 2009, 52(13–14): 2949–2955
https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.025
76 Al-Sallami W, Al-Damook A, Thompson H. A numerical investigation of thermal airflows over strip fin heat sinks. International Communications in Heat and Mass Transfer, 2016, 75: 183–191
https://doi.org/10.1016/j.icheatmasstransfer.2016.03.014
77 Krishnan S, Hernon D, Hodes M, Mullins J, Lyons A M. Design of complex structured monolithic heat sinks for enhanced air cooling. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2012, 2(2): 266–277
https://doi.org/10.1109/TCPMT.2011.2175448
78 Han X H, Wang Q, Park Y G, T’Joen C, Sommers A, Jacobi A. A review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transfer Engineering, 2012, 33(12): 991–1009
https://doi.org/10.1080/01457632.2012.659613
79 Yang K S, Chiang C M, Lin Y T, Chien K H, Wang C C. On the heat transfer characteristics of heat sinks: influence of fin spacing at low Reynolds number region. International Journal of Heat and Mass Transfer, 2007, 50(13–14): 2667–2674
https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.047
80 Yang K S, Jhong J H, Lin Y T, Chien K H, Wang C C. On the heat transfer characteristics of heat sinks: with and without vortex generators. IEEE Transactions on Components and Packaging Technologies, 2010, 33(2): 391–397
https://doi.org/10.1109/TCAPT.2010.2044412
81 Wang C C, Yang K S, Liu Y P, Chen Y. Effect of cannelure fin configuration on compact aircooling heat sink. Applied Thermal Engineering, 2011, 31(10): 1640–1647
https://doi.org/10.1016/j.applthermaleng.2011.02.003
82 Kanargi O B, Lee P S, Yap C. A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink. International Journal of Heat and Mass Transfer, 2017, 106: 449–464
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057
83 Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066
https://doi.org/10.1126/science.aai7899
84 Roberts J K, Reese S D. High power radiation emitter device and heat dissipating package for electronic components. Google Patents, 2003
85 Goldberg N. Narrow channel forced air heat sink. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1984, 7(1): 154–159
86 Knight R, Goodling J, Hall D. Optimal thermal design of forced convection heat sinks-analytical. Journal of Electronic Packaging, 1991, 113(3): 313–321
https://doi.org/10.1115/1.2905412
87 Koito Y, Imura H, Mochizuki M, Saito Y, Torii S. Fundamental experiments and numerical analyses on heat transfer characteristics of a vapor chamber (Effect of heat source size). JSME International Journal, Series B, Fluids and Thermal Engineering, 2006, 49(4): 1233–1240
https://doi.org/10.1299/jsmeb.49.1233
88 Vasiliev L L. Heat pipes in modern heat exchangers. Applied Thermal Engineering, 2005, 25(1): 1–19
https://doi.org/10.1016/j.applthermaleng.2003.12.004
89 Yazawa K, Ishizuka M. A study of channel optimization in cooling spreader on a smaller and transient heat source. Journal of the Electrochemical Society, 2005, 145(5): 1550–1560
90 Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermal storage system: a review. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2225–2244
https://doi.org/10.1016/j.rser.2009.06.024
91 Krishnan S, Garimella S V, Kang S S. A novel hybrid heat sink using phase change materials for transient thermal management of electronics. IEEE Transactions on Components and Packaging Technologies, 2005, 28(2): 281–289
92 Akhilesh R, Narasimhan A, Balaji C. Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. International Journal of Heat and Mass Transfer, 2005, 48(13): 2759–2770
https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.032
93 Kandasamy R, Wang X Q, Mujumdar A S. Transient cooling of electronics using phase change material (PCM)-based heat sinks. Applied Thermal Engineering, 2008, 28(8–9): 1047–1057
https://doi.org/10.1016/j.applthermaleng.2007.06.010
94 Robak C W, Bergman T L, Faghri A. Enhancement of latent heat energy storage using embedded heat pipes. International Journal of Heat and Mass Transfer, 2011, 54(15–16): 3476–3484
https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.038
95 Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 2010, 84(8): 1402–1412
https://doi.org/10.1016/j.solener.2010.04.022
96 He Q, Wang S, Tong M, Liu Y. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Conversion and Management, 2012, 64: 199–205
https://doi.org/10.1016/j.enconman.2012.04.010
97 Abdollahzadeh M, Esmaeilpour M. Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. International Journal of Heat and Mass Transfer, 2015, 80: 376–385
https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.007
98 Hu H M, Ge T S, Dai Y J, Wang R Z. Experimental study on water-cooled thermoelectric cooler for CPU under severe environment. International journal of refrigeration, 2016, 62(6): 30–38
99 Schmidt R R, Notohardjono B D. High-end server low-temperature cooling. IBM Journal of Research and Development, 2002, 46(6): 739–751
https://doi.org/10.1147/rd.466.0739
100 Shamberger P J. Cooling capacity figure of merit for phase change materials. Journal of Heat Transfer, 2015, 138(2): 024502
https://doi.org/10.1115/1.4031252
101 Baby R, Balaji C. Thermal optimization of PCM based pin fin heat sinks: an experimental study. Applied Thermal Engineering, 2013, 54(1): 65–77
https://doi.org/10.1016/j.applthermaleng.2012.10.056
102 Pakrouh R, Hosseini M J, Ranjbar A A. A parametric investigation of a PCM-based pin fin heat sink. Mechanical Sciences, 2015, 6(1): 65–73
https://doi.org/10.5194/ms-6-65-2015
103 Naghavi M S, Ong K S, Mehrali M, Badruddin I A, Metselaar H S C. A state-of-the-art review on hybrid heat pipe latent heat storage systems. Energy Conversion and Management, 2015, 105: 1178–1204
https://doi.org/10.1016/j.enconman.2015.08.044
104 Yin H, Gao X, Ding J, Zhang Z. Experimental research on heat transfer mechanism of heat sink with composite phase change materials. Energy Conversion and Management, 2008, 49(6): 1740–1746
https://doi.org/10.1016/j.enconman.2007.10.022
105 Weng Y C, Cho H P, Chang C C, Chen S L. Heat pipe with PCM for electronic cooling. Applied Energy, 2011, 88(5): 1825–1833
https://doi.org/10.1016/j.apenergy.2010.12.004
106 Bezerra Helbing T, Schmitz G. Experimental analysis of latent heat storages integrated into a liquid cooling system for the cooling of power electronics. International Refrigeration and Air Conditioning Conference, 2016
107 Riffat S B, Omer S A, Ma X. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation. Renewable Energy, 2001, 23(2): 313–323
https://doi.org/10.1016/S0960-1481(00)00170-1
108 Kays W M, Crawford M E, Weigand B. Convective heat and mass transfer. Tata McGraw-Hill Education, 2012
109 Müller D I U, Bühler D I L, Dulikravich G S. Magnetofluid dynamics in channels and containers. Applied Mechanics Reviews, 2002, 55(1): B14
https://doi.org/10.1115/1.1445331
110 Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Conversion and Management, 2016, 117: 577–585
https://doi.org/10.1016/j.enconman.2016.03.054
111 Chein R, Chen Y. Performances of thermoelectric cooler integrated with microchannel heat sinks. International journal of refrigeration, 2005, 28(6): 828–839
112 Mei S F. Investigation on liquid metal enhanced cooling method for high power density LEDs. Dissertation for the Master’s Degree. Beijing: University of Chinese Academy of Sciences, 2014
113 Yu L J. Experimental study on liquid metal remote cooling method for high power density LEDs. Dissertation for the Master’s Degree. Beijing: University of Chinese Academy of Sciences, 2016
114 Chen Y. Study on new RF hyperthermia methods and their performances. Dissertation for the Master’s Degree. Beijing: University of Chinese Academy of Sciences, 2015
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed