Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2018, Vol. 12 Issue (2): 233-238   https://doi.org/10.1007/s11708-018-0529-3
  本期目录
氮掺杂石墨烯方法提升无膜酶生物燃料电池性能
YAZDI Alireza AHMADIAN, 徐杰()
伊利诺伊大学芝加哥分校机械与工业工程学院, 芝加哥 60607, 美国
Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell
Alireza AHMADIAN YAZDI, Jie XU()
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
 全文: PDF(227 KB)   HTML
摘要:

对原生石墨烯的杂原子掺杂是一种获取新的催化特性的有效途径,这种方法有望开辟石墨烯在能量转换与存储设备中的新的应用潜力。例如,氮掺杂石墨烯在许多电化学系统中就展现出非常优异的性能,包括氧还原反应以及最新的葡萄糖氧化反应。氮掺杂石墨烯对双氧水(H2 O2)的高度敏感性使得高灵敏度和快速响应的酶生物传感器的开发成为可能。然而,这里面存在的一个有待阐明的问题是,提高对葡萄糖检测的阳极响应是否可以促进酶生物燃料电池整体性能的提升。因此,这里我们首先通过无催化剂的单步热处理法合成氮掺杂石墨烯,然后将其作为生物催化剂载体用于无膜酶生物燃料电池,以探究其在改变电池性能特性方面所起到的作用。研究结果表明,石墨烯结构中的电子受体氮位点可以有效强化介体(氧化还原聚合物)、酶氧化还原活性位点以及电极表面之间的电子传输效率。此外,当生物阳极采用高掺杂度的氮掺杂石墨烯进行修饰时,无膜酶生物燃料电池的输出功率和电流密度达到最好性能。

Abstract

Heteroatom-doping of pristine graphene is an effective route for tailoring new characteristics in terms of catalytic performance which opens up potentials for new applications in energy conversion and storage devices. Nitrogen-doped graphene (N-graphene), for instance, has shown excellent performance in many electrochemical systems involving oxygen reduction reaction (ORR), and more recently glucose oxidation. Owing to the excellent H2O2 sensitivity of N-graphene, the development of highly sensitive and fast-response enzymatic biosensors is made possible. However, a question that needs to be addressed is whether or not improving the anodic response to glucose detection leads to a higher overall performance of enzymatic biofuel cell (eBFC). Thus, here we first synthesized N-graphene via a catalyst-free single-step thermal process, and made use of it as the biocatalyst support in a membraneless eBFC to identify its role in altering the performance characteristics. Our findings demonstrate that the electron accepting nitrogen sites in the graphene structure enhances the electron transfer efficiency between the mediator (redox polymer), redox active site of the enzymes, and electrode surface. Moreover, the best performance in terms of power output and current density of eBFCs was observed when the bioanode was modified with highly doped N-graphene.

Key wordsenzymatic fuel cell    nitrogen-doped graphene    reduced graphene oxide    catalyst-free synthesis
收稿日期: 2017-06-29      出版日期: 2018-06-04
通讯作者: 徐杰     E-mail: jiexu@uic.edu
Corresponding Author(s): Jie XU   
 引用本文:   
YAZDI Alireza AHMADIAN, 徐杰. 氮掺杂石墨烯方法提升无膜酶生物燃料电池性能[J]. Frontiers in Energy, 2018, 12(2): 233-238.
Alireza AHMADIAN YAZDI, Jie XU. Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell. Front. Energy, 2018, 12(2): 233-238.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0529-3
https://academic.hep.com.cn/fie/CN/Y2018/V12/I2/233
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Anode modification OCV /V Maximum power density /(μW ·cm 2) Current density at maximum power/(μA ·cm 2) Power increase vs. blank/%
N-graphene (1:50) 0.55 85.91 355.00 41
N-graphene (1:5) 0.55 74.09 339.90 35
rGO 0.56 59.45 288.60 14
Blank 0.56 55.97 252.10 -
Tab.1  
1 Rasmussen M, Abdellaoui S, Minteer S D. Enzymatic biofuel cells: 30 years of critical advancements. Biosensors & Bioelectronics, 2016, 76: 91–102
https://doi.org/10.1016/j.bios.2015.06.029 pmid: 26163747
2 Meredith M T, Minteer S D. Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 2012, 5(1): 157–179
https://doi.org/10.1146/annurev-anchem-062011-143049 pmid: 22524222
3 Yazdi A A, D’Angelo L, Omer N, Windiasti G, Lu X, Xu J. Carbon nanotube modification of microbial fuel cell electrodes. Biosensors & Bioelectronics, 2016, 85: 536–552
https://doi.org/10.1016/j.bios.2016.05.033 pmid: 27213269
4 Pankratov D, Sundberg R, Sotres J, Maximov I, Graczyk M, Suyatin D B, González-Arribas E, Lipkin A, Montelius L, Shleev S. Transparent and flexible, nanostructured and mediatorless glucose/oxygen enzymatic fuel cells. Journal of Power Sources, 2015, 294: 501–506
https://doi.org/10.1016/j.jpowsour.2015.06.041
5 Milton R D, Lim K, Hickey D P, Minteer S D. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. Bioelectrochemistry (Amsterdam, Netherlands), 2015, 106(Pt A): 56–63
https://doi.org/10.1016/j.bioelechem.2015.04.005 pmid: 25890695
6 Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials, 2015, 5(2): 1400930
https://doi.org/10.1002/aenm.201400930
7 Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M. Stretchable biofuel cell with enzyme-modified conductive textiles. Biosensors & Bioelectronics, 2015, 74: 947–952
https://doi.org/10.1016/j.bios.2015.07.063 pmid: 26257187
8 Neto S A, Milton R D, Hickey D P, Andrade A R D, Minteer S D. Membraneless enzymatic ethanol/O2 fuel cell: transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode. Journal of Power Sources, 2016, 324: 208–214
https://doi.org/10.1016/j.jpowsour.2016.05.073
9 Qu L, Liu Y, Baek J B, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326
https://doi.org/10.1021/nn901850u pmid: 20155972
10 Ito Y, Cong W, Fujita T, Tang Z, Chen M. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(7): 2131–2136
https://doi.org/10.1002/anie.201410050 pmid: 25470132
11 Lin Z, Waller G H, Liu Y, Liu M, Wong C P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon, 2013, 53: 130–136
https://doi.org/10.1016/j.carbon.2012.10.039
12 Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794
https://doi.org/10.1021/cs200652y
13 Wang Y, Shao Y, Matson D W, Li J, Lin Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 2010, 4(4): 1790–1798
https://doi.org/10.1021/nn100315s pmid: 20373745
14 Thomas T J, Ponnusamy K E, Chang N M, Galmore K, Minteer S D. Effects of annealing on mixture-cast membranes of Nafion® and quaternary ammonium bromide salts. Journal of Membrane Science, 2003, 213(1–2): 55–66
https://doi.org/10.1016/S0376-7388(02)00512-4
15 Akers N L, Moore C M, Minteer S D. Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochimica Acta, 2005, 50(12): 2521–2525
https://doi.org/10.1016/j.electacta.2004.10.080
16 Dawn A, Shiraki T, Haraguchi S, Sato H, Sada K, Shinkai S. Transcription of chirality in the organogel systems dictates the enantiodifferentiating photodimerization of substituted anthracene. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(12): 3676–3689
https://doi.org/10.1002/chem.200902936 pmid: 20151438
17 Minson M, Meredith M T, Shrier A, Giroud F, Hickey D, Glatzhofer D T, Minteer S D. High performance glucose/O2 biofuel cell: effect of utilizing purified laccase with anthracene-modified multi-walled carbon nanotubes. Journal of the Electrochemical Society, 2012, 159(12): G166–G170
https://doi.org/10.1149/2.062212jes
18 Milton R D, Giroud F, Thumser A E, Minteer S D, Slade R C T. Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chemical Communications, 2014, 50(1): 94–96
https://doi.org/10.1039/C3CC47689H pmid: 24185735
19 Merchant S A, Tran T O, Meredith M T, Cline T C, Glatzhofer D T, Schmidtke D W. High-sensitivity amperometric biosensors based on ferrocene-modified linear poly(ethylenimine). Langmuir, 2009, 25(13): 7736–7742
https://doi.org/10.1021/la9004938 pmid: 19382795
20 Merchant S A, Meredith M T, Tran T O, Brunski D B, Johnson M B, Glatzhofer D T, Schmidtke D W. Effect of mediator spacing on electrochemical and enzymatic response of ferrocene redox polymers. Journal of Physical Chemistry C, 2010, 114(26): 11627–11634
https://doi.org/10.1021/jp911188r
21 Milton R D, Giroud F, Thumser A E, Minteer S D, Slade R C T. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Physical Chemistry Chemical Physics, 2013, 15(44): 19371–19379
https://doi.org/10.1039/c3cp53351d pmid: 24121716
22 Meredith M T, Kao D Y, Hickey D, Schmidtke D W, Glatzhofer D T. High current density ferrocene-modified linear poly(ethylenimine) bioanodes and their use in biofuel cells. Journal of the Electrochemical Society, 2011, 158(2): B166–B174
https://doi.org/10.1149/1.3505950
23 Lin Z, Song M K, Ding Y, Liu Y, Liu M, Wong C P. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2012, 14(10): 3381–3387
https://doi.org/10.1039/c2cp00032f pmid: 22307527
24 Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5(6): 4350–4358
https://doi.org/10.1021/nn103584t pmid: 21574601
25 Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210–215
https://doi.org/10.1038/nnano.2008.67 pmid: 18654505
26 Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. Defect graphene as a trifunctional catalyst for electrochemical reactions. Advanced Materials, 2016, 28(43): 9532–9538
https://doi.org/10.1002/adma.201602912 pmid: 27622869
27 Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758
https://doi.org/10.1021/nl803279t pmid: 19326921
28 Karyakin A A. Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis, 2001, 13(10): 813–819
https://doi.org/10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
29 Zhao W, Xu J J, Shi C G, Chen H Y. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir, 2005, 21(21): 9630–9634
https://doi.org/10.1021/la051370+ pmid: 16207046
30 Karyakin A A, Gitelmacher O V, Karyakina E E. Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Analytical Chemistry, 1995, 67(14): 2419–2423
https://doi.org/10.1021/ac00110a016
31 Yazdi A A, Preite R, Milton R D, Hickey D P, Minteer S D, Xu J. Rechargeable membraneless glucose biobattery: towards solid-state cathodes for implantable enzymatic devices. Journal of Power Sources, 2017, 343: 103–108
https://doi.org/10.1016/j.jpowsour.2017.01.032
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed