Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2018, Vol. 12 Issue (2): 239-248   https://doi.org/10.1007/s11708-018-0533-7
  本期目录
非均匀辐照对太阳能热电发电系统性能的影响
殷二帅1, 李强1(), 宣益民1,2
1. 南京理工大学能源与动力工程学院, 电子设备热控制工信部重点实验室,南京 210094,中国
2. 南京航空航天大学能源与动力工程学院,南京 210016,中国
Effect of non-uniform illumination on performance of solar thermoelectric generators
Ershuai YIN1, Qiang LI1(), Yimin XUAN2
1. MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. IMIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(640 KB)   HTML
摘要:

太阳能热电发电系统(STEG)可以利用聚集的太阳光发电。由光学聚光器引起的太阳辐照分布的非均匀性可能会影响太阳能热电发电系统的性能。本文建立了太阳能热电发电系统的三维有限元模型,采用二维高斯分布模拟聚集到太阳能热电发电系统的太阳光的非均匀分布特性。在保持总入射太阳能不变的同时,研究了6种具有不同非均匀度的太阳辐照分布,讨论了非均匀太阳辐照分布对太阳能热电发电系统温度分布、电压分布和最大输出功率的影响。还比较了具有32、18和8对热电引脚的三种不同热电发电器件在非均匀太阳辐照分布下的性能。结果表明:太阳辐照的非均匀度对太阳能热电发电系统的温度分布和电压分布影响很大;与边缘区域热电引脚相比,中间区域的热电引脚有着更大的温差和产生更大的电压;不均匀的太阳辐照分布会削弱太阳能热电发电系统的性能,在本文研究的不均匀性范围内系统最大输出功率下降了1.4%;此外,减少用于非均匀太阳辐照分布下的热电发电器件的引脚数量可以极大的提高太阳能热电发电系统的性能。

Abstract

Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three-dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.

Key wordssolar thermoelectric generators    non-uniform solar illumination    performance evaluation    solar energy
收稿日期: 2017-05-24      出版日期: 2018-06-04
通讯作者: 李强     E-mail: liqiang@njust.edu.cn
Corresponding Author(s): Qiang LI   
 引用本文:   
殷二帅, 李强, 宣益民. 非均匀辐照对太阳能热电发电系统性能的影响[J]. Frontiers in Energy, 2018, 12(2): 239-248.
Ershuai YIN, Qiang LI, Yimin XUAN. Effect of non-uniform illumination on performance of solar thermoelectric generators. Front. Energy, 2018, 12(2): 239-248.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0533-7
https://academic.hep.com.cn/fie/CN/Y2018/V12/I2/239
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Parameters Value
Length of TE legs/mm 1
Width of TE legs/mm 1
Height of TE legs/mm 1.5
Number of TE legs 64,36,16
Length of cu electrode/mm 3
Width of cu electrode/mm 1
Height of cu electrode/mm 0.3
Thermal conductivity of copper/(W?(m?K)-1) 400
Density of copper/(kg?m-3) 8960
Specific heat capacity of copper/(J?(kg?K)-1) 385
Electrical conductivity of copper/(S?m-1) 5.998 × 107
Length of ceramic plate/mm 16,12,8
Width of ceramic plate/mm 16,12,8
Height of ceramic plate/mm 0.8
Thermal conductivity of ceramic plate/(W?(m?K)-1) 18
Density of ceramic plate/(kg?m-3) 3960
Specific heat capacity of ceramic plate/(J?(kg?K)-1) 850
Transmittance of the glass 0.94
Emissivity of selective absorber 0.05
Absorptance of the solar selective absorber 0.95
Temperature of environment/K 293.15
Convection heat transfer coefficient at the lower surface of TE/(W?m-2?K-1) 10000
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
CP Specific heat capacity/(J?(kg?K)-1)
T Temperature/K
t Time/s
q Heat flux vector/(W?m-2)
q ˙ Heat generation rate/(W?m-3)
Hamiltonian
s Seebeck coefficient/(V?K)
k Thermal conductivity/(W?(m?K)-1)
J Electric current density vector/(A?m-2)
E Electric field intensity vector/(V?m-1)
D Electric fluxdensity vector/(A?m-2)
Z Figure of merit of TE generator
G Solar radiation density/(W?m-2)
D2 Variance of Gaussian distribution
G0 Density of uniform radiation/(W?m-2)
As Area of selective absorber/m2
Q Heat flux density/(W?m-2)
P Output power of TE generator/W
V Voltage/V
r Resistance/W
r Density/(kg?m-3)
s Electrical conductivity/(S?m-1)
j Electric scalar potential/V
p Eircumference ratio
w Normalization factor
t Transmittance of the glass
a Absorptance of the solar selective absorber
e Emissivity of selective absorber
e External resistance
oc Open circuit voltage
max Maximum output power of TE generator
TE Thermoelectric generator
  
1 Rowe D M. Thermoelectrics Handbook: Macro to Nano. Boca Raton: CRC press, 2005
2 Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
https://doi.org/10.1038/35098012
3 Jang J Y, Tsai Y C. Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system. Applied Thermal Engineering, 2013, 51(1–2): 677–689
https://doi.org/10.1016/j.applthermaleng.2012.10.024
4 Chen W H, Liao C Y, Hung C I, Huang W L. Experimental study on thermoelectric modules for power generation at various operating conditions. Energy, 2012, 45(1): 874–881
https://doi.org/10.1016/j.energy.2012.06.076
5 Gomez M, Reid R, Ohara B, Lee H. Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. Journal of Applied Physics, 2013, 113(17): 174908
https://doi.org/10.1063/1.4802668
6 Kraemer D, Poudel B, Feng H P, Caylor J C, YuB.High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature materials, 2011, 10(7): 532–538
https://doi.org/10.1038/nmat3013
7 Lertsatitthanakorn C, Therdyothin A, Soponronnarit S. Performance analyses and economic evaluation of a hybrid thermoelectric solar water heater. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2010, 224(5): 621–627
https://doi.org/10.1243/09576509JPE944
8 Chen W H, Wang C C, Hung C I, Yang C C, Juang R C. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy, 2014, 64: 287–297
https://doi.org/10.1016/j.energy.2013.10.073
9 Moraes F S, Santos L C, Alencar R N, Sempels Éric V ,Sandoval J C, Lesage F J .Solar thermoelectric generator performance relative to air speed. Energy Conversion and Management, 2015, 99: 326–333.
https://doi.org/10.1016/j.enconman.2015.04.049
10 Rahbar N, Esfahani J A. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination, 2012, 284: 55–61
https://doi.org/10.1016/j.desal.2011.08.036
11 Chen J. Thermodynamic analysis of a solar-driven thermoelectric generator. Journal of Applied Physics, 1996, 79(5): 2717–2721
https://doi.org/10.1063/1.361143
12 Baranowski L L, Snyder G J, Toberer E S. Concentrated solar thermoelectric generators. Energy & Environmental Science, 2012, 5(10): 9055–9067
https://doi.org/10.1039/c2ee22248e
13 Amatya R, Ram R J. Solar thermoelectric generator for micropower applications. Journal of Electronic Materials, 2010, 39(9): 1735–1740
https://doi.org/10.1007/s11664-010-1190-8
14 Chen G. Theoretical efficiency of solar thermoelectric energy generators. Journal of Applied Physics, 2011, 109(10): 104908
https://doi.org/10.1063/1.3583182
15 Candadai A A, Kumar V P, Barshilia H C. Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating. Solar Energy Materials and Solar Cells, 2016, 145: 333–341
https://doi.org/10.1016/j.solmat.2015.10.040
16 Li P, Cai L, Zhai P, Tang X, Zhang Q.Design of a concentration solar thermoelectric generator. Journal of electronic materials, 2010, 39(9): 1522–1530
https://doi.org/10.1007/s11664-010-1279-0
17 Kraemer D, McEnaney K, Chiesa M, ChenG.Modeling and optimization of solar thermoelectric generators for terrestrial applications. Solar Energy, 2012, 86(5): 1338–1350
https://doi.org/10.1016/j.solener.2012.01.025
18 Ming T, Wang Q, Peng K, Cai Z,Yang W.The influence of non-uniform high heat flux on thermal stress of thermoelectric power generator. Energies, 2015, 8(11): 12584–12602
https://doi.org/10.3390/en81112332
19 Suzuki R O, Ito K O, Oki S. Analysis of the performance of thermoelectric modules under concentrated radiation heat flux. Journal of Electronic Materials, 2016, 45(3): 1827–1835
https://doi.org/10.1007/s11664-015-4237-z
20 Admasu B T, Luo X, Yao J. Effects of temperature non-uniformity over the heat spreader on the outputs of thermoelectric power generation system. Energy Conversion and Management, 2013, 76: 533–540
https://doi.org/10.1016/j.enconman.2013.08.004
21 Xiao J, Yang T, Li P,Zhai P, Zhang Q.Thermal design and management for performance optimization of solar thermoelectric generator. Applied Energy, 2012, 93: 33–38
https://doi.org/10.1016/j.apenergy.2011.06.006
22 Antonova E E, Looman D C. Finite elements for thermoelectric device analysis in ANSYS. In: 24th International Conference on Thermoelectrics, 2005
https://doi.org/10.1109/ICT.2005.1519922
23 Deng Y, Zhu W, Wang Y, ShiY. Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Solar Energy, 2013, 88: 182–191
https://doi.org/10.1016/j.solener.2012.12.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed