Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2018, Vol. 12 Issue (2): 305-313   https://doi.org/10.1007/s11708-018-0539-1
  本期目录
磁约束核聚变:简要回顾
黄传军1(), 李来风1,2
1. 航天低温推进剂技术国家重点实验室,中国科学院理化技术研究所,北京 100190,中国
2. 中国科学院大学,北京 100049,中国
Magnetic confinement fusion: a brief review
Chuanjun HUANG1(), Laifeng LI2
1. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(210 KB)   HTML
摘要:

核聚变能被认为是终极能源。核聚变能不像化石燃料那样导致气候变化。与非常规能源中可再生能源相比,核聚变能原料资源丰富、释放能量巨大。与非常规能源中核裂变能相比,核聚变能安全性更高。为和平利用核聚变能,人类在过去几十年内开展了持续的研究。目前,实现可控核聚变的约束方法主要有惯性约束和磁约束两种。本文简要回顾了磁约束核聚变,侧重了不同磁约束系统以及磁约束核聚变对超导磁体材料及第一壁材料的挑战。在JET、TFTR、JT-60 和EAST等聚变装置开展的相关试验已经证实了磁约束核聚变的科学可行性,并在此基础上开始建设国际热核聚变实验堆(ITER)。当前,实现可控磁约束核聚变这一终极能源的研究正在稳步进行,建设磁约束核聚变示范堆(DEMO)和商业聚变能电站的蓝图已经确定。

Abstract

Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasma-facing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source.

Key wordsfusion energy    magnetic confinement    tokamak    structural material    superconducting magnet
收稿日期: 2017-07-03      出版日期: 2018-06-04
通讯作者: 黄传军     E-mail: cjhuang@mail.ipc.ac.cn
Corresponding Author(s): Chuanjun HUANG   
 引用本文:   
黄传军, 李来风. 磁约束核聚变:简要回顾[J]. Frontiers in Energy, 2018, 12(2): 305-313.
Chuanjun HUANG, Laifeng LI. Magnetic confinement fusion: a brief review. Front. Energy, 2018, 12(2): 305-313.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0539-1
https://academic.hep.com.cn/fie/CN/Y2018/V12/I2/305
Energy types Reserves*
/ZJ
Resources*
/ZJ
Technical potential
/ZJ (per year)
Fossil fuels Coal 20 290–440 -
Oil 9 17–23 -
Natural gas 8 50–130 -
Nuclear fission U-238+ U-235 260 1300 -
Th-232 420 ~3 × Uranium -
Nuclear fusion Deuterium - 1.60 × 1010 -
Lithium in ocean - 1.40 × 1010 -
Lithium on land - 1700 -
Renewable Energy Biomass - - 0.16–0.27
Geothermal - - 0.8–1.5
Hydro - - 0.06
Solar - - 62–280
Wind - - 1.3–2.3
Ocean - - 3.2–11
Tab.1  
Energy sources Mass Area
Conventional Coal/MT 2.7 -
Oil/ MT 1.8 -
Unconventional Solar plant - 70 km2 of solar panels
Wind power plant - 3000 × 1 MW windmills (~100 km2)
Uranium (fission reactor)/T 25 -
Mixture of D/T (fusion reactor)/kg 350 -
Tab.2  
Fig.1  
Fig.2  
Parameters LHD W7-X
Location Toki
Japan
Greifswald
Germany
Ro*/m 3.5–3.9 5.5
a*/m 0.6 0.53
B/T 2–3 3
Pulse length/ s >103 at low density 1800
nTtE/(m-3?keV?s) 4.4 × 1019 -
Tab.3  
Fig.3  
Parameters Tokamaks
EAST D III-D JT-60U JET ITER
Location Hefei
China
San Diego
USA
Naka
Japan
Culham
UK
Cadarache
France
Ro*/m 1.7 1.7 3.4 2.96 6.2
a*/m 0.4 0.67 1.1 0.96 2.0
B/T 3.5 2.1 4.2 4.0 5.3
I/MA 1.0 2.1 5.0 6.0 15
Main achievements First fully superconducting machine;
61s in fully-non-inductive H-mode (2016).
World’s record b = 12.5% for tokamak machine. Long pulse (28 s) in a steady-state, equivalent Qp>1 (2005); being updated to “JT-60SA.” World’s only tritium compatible machine;
world’s record fusion power 16.1 MW (1997).
Expect Qp~10;
planned fusion power 500 MW.
Tab.4  
Fig.4  
1 Piera M. Sustainability issues in the development of Nuclear Fission energy. Energy Conversion and Management, 2010, 51(5): 938–946
https://doi.org/10.1016/j.enconman.2009.11.032
2 Horvath A, Rachlew E. Nuclear power in the 21st century: challenges and possibilities. Ambio, 2016, 45(Suppl 1): 38–49
https://doi.org/10.1007/s13280-015-0732-y pmid: 26667059
3 Rogner H H. World energy demand and supply. IAEA, Vienna, Austria, 2012
4 Betti R, Hurricane O A. Inertial-confinement fusion with lasers. Nature Physics, 2016, 12(5): 435–448
https://doi.org/10.1038/nphys3736
5 Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D. Direct-drive inertial confinement fusion: a review. Physics of Plasmas, 2015, 22(11): 139–477
https://doi.org/10.1063/1.4934714
6 Stacey W M. An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Fusion, Germany: Wiley-VCH, 2010
7 Burdakov A V, Ivanov A A, Kruglyakov E P. Modern magnetic mirrors and their fusion prospects. Plasma Physics and Controlled Fusion, 2010, 52(12): 124026
https://doi.org/10.1088/0741-3335/52/12/124026
8 Fowler T K, Moir R W, Simonen T C. A new simpler way to obtain high fusion power gain in tandem mirrors. Nuclear Fusion, 2017, 57(5): 056014
https://doi.org/10.1088/1741-4326/aa5e54
9 Clery D. Twisted logic. Science, 2015, 350(6259): 369–371
https://doi.org/10.1126/science.350.6259.369 pmid: 26494740
10 Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch H S, Wendelstein 7-X team. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100000. Nature Communications, 2016, 7: 13493
https://doi.org/10.1038/ncomms13493 pmid: 27901043
11 Bosch H S, Brakel R, Braeuer T, Bykov V, Eeten P, Feist J H, Fullenbach F, Gasparotto M, Grote H, Klinger T, Laqua H, Nagel M, Naujoks D, Otte M, Risse K, Rummel T, Schacht J, Spring A, Pedersen T S, Vilbrandt R, Wegener L, Werner A, Wolf R C, Baldzuhn J, Biedermann C, Braune H, Buihenn R, Hirsch M, Hofel U, Kanuer J, Kornejew P, Marsen S, Stange T, Mora H T, and W7-X team. Final integration, commissioning and start of the Wendelstein 7-X stellarator operation. Nuclear Fusion, 2017, 57(11): 116015
https://doi.org/10.1088/1741-4326/aa7cbb
12 Brotankova J, Cadwallader L C, Costley A E. Magnetic Fusion Technology Lecture Notes in Energy. New York: Springer, 2013
13 Ongena J, Koch R, Wolf R, Zohm H. Magnetic-confinement fusion. Nature Physics, 2016, 12(5): 398–410
https://doi.org/10.1038/nphys3745
14 Butler D. ITER keeps eye on prize. Nature, 2013, 502(7471): 282–283
https://doi.org/10.1038/502282a pmid: 24132267
15 Clery D. The new shape of fusion. Science, 2015, 348(6237): 854
https://doi.org/10.1126/science.348.6237.854 pmid: 25999489
16 Chapman B E, Almagri A F, Anderson J K, Brower D L, Caspary K J, Clayton D J, Craig D, Hartog D J D, Ding W X, Ennis D A, Fiksel G, Gangadhara S, Kumar S, Magee R M, O’Connell R, Parke E, Prager S C, Reusch J A, Sarff J S, Stephens H D, Yang Y M. Generation and confinement of hot ions and electrons in a reversed-field pinch plasma. Plasma Physics and Controlled Fusion, 2010, 52(12): 124048
https://doi.org/10.1088/0741-3335/52/12/124048
17 Yamada H, Kasada R, Ozaki A, Sakamoto R, Sakamoto Y, Taken-aga H, Tanaka T, Tanigawa H, Okano K, Tobita K, Kaneko O, Ushigusa K. Japanese endeavors to establish technological bases for DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1318–1325
https://doi.org/10.1016/j.fusengdes.2015.12.035
18 Brown T, Titus P, Brooks A, Zhang H, Neilson H, Im K, Kim K. Results of availability imposed configuration details developed for K-DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1091–1095
https://doi.org/10.1016/j.fusengdes.2016.01.018
19 Federici G, Kemp R, Ward D, Bachmann C, Franke T, Gonzalez S, Lowry C, Gadomska M, Harman J, Meszaros B, Morlock C, Romanelli F, Wenninger R. Overview of EU DEMO design and R&D activities. Fusion Engineering and Design, 2014, 89(7–8): 882–889
https://doi.org/10.1016/j.fusengdes.2014.01.070
20 Zheng J, Liu X, Song Y, Wan Y, Li J, Wu S, Wan B, Ye M, Wei J, Xu W, Liu S, Weng P, Lu K, Luo Z. Concept design of CFETR superconducting magnet system based on different maintenance ports. Fusion Engineering and Design, 2013, 88(11): 2960–2966
https://doi.org/10.1016/j.fusengdes.2013.06.008
21 Buckingham R, Loving A. Remote-handling challenges in fusion research and beyond. Nature Physics, 2016, 12(5): 391–393
https://doi.org/10.1038/nphys3755
22 Bruzzone P. Superconductivity and fusion energy-the inseparable companions. Superconductor Science and Technology, 2015, 28(2): 708–718
https://doi.org/10.1088/0953-2048/28/2/024001
23 Pan X F, Feng Y, Yan G, Cui L J, Chen C, Zhang Y, Wu Z X, Liu X H, Zhang P X, Bai Z M, Zhao Y, Li L F. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment. Superconductor Science and Technology, 2016, 29(1): 015008
https://doi.org/10.1088/0953-2048/29/1/015008
24 Fietz W H, Barth C, Drotziger S, Goldacker W, Heller R, Schlachter S I, Weiss K P. Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Engineering and Design, 2013, 88(6–8): 440–445
https://doi.org/10.1016/j.fusengdes.2013.03.059
25 Uglietti D, Bykovsky N, Wesche R, Bruzzone P. Development of HTS conductors for fusion magnets. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1–6
https://doi.org/10.1109/TASC.2014.2364715
26 Qin J G, Wu Y, Li J G, Dai C, Liu F. Manufacture and test of Bi-2212 cable-in-conduit conductor. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1–5
27 Zhou T, Lu K, Ran Q, Ding K, Feng H, Wu H, Liu C, Song Y, Niu E, Bauer P, Devred A. Mock-up qualification and prototype manufacture for ITER current leads. Fusion Engineering and Design, 2015, 96–97: 388–391
https://doi.org/10.1016/j.fusengdes.2015.04.050
28 Nishimura A. Need for development of higher strength cryogenic structural materials for fusion magnet. Advances in Cryogenic Engineering, 2014, 60: 333–339
29 Shen T, Li P, Jiang J, Cooley L, Tompkins J, McRae D, Walsh R. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications. Superconductor Science and Technology, 2015, 28(6): 065002
https://doi.org/10.1088/0953-2048/28/6/065002
30 Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Engineering and Design, 2013, 88(6–8): 472–482
https://doi.org/10.1016/j.fusengdes.2013.02.081
31 Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Materials Today, 2009, 12(11): 12–19
https://doi.org/10.1016/S1369-7021(09)70294-9
32 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, 44(1): 241–267
https://doi.org/10.1146/annurev-matsci-070813-113627
33 Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M. Silicon carbide composites as fusion power reactor structural materials. Journal of Nuclear Materials, 2011, 417(1–3): 330–339
https://doi.org/10.1016/j.jnucmat.2011.03.005
34 Huang Q. Status and improvement of CLAM for nuclear application. Nuclear Fusion, 2017, 57: 086042
https://doi.org/10.1088/1741-4326/aa763f
35 Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W. Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. Journal of Nuclear Materials, 2009, 386(5): 411–417
https://doi.org/10.1016/j.jnucmat.2008.12.323
36 Kondo T. IFMIF, its facility concept and technology. Journal of Nuclear Materials, 1998, 258(4): 47–55
https://doi.org/10.1016/S0022-3115(98)00322-5
37 Knaster J, Chel S, Fischer U, Groeschel F, Heidinger R, Ibarra A, Micciche G, Möslang A, Sugimoto M, Wakai E. IFMIF, a fusion relevant neutron source for material irradiation current status. Journal of Nuclear Materials, 2014, 453(1–3): 115–119
https://doi.org/10.1016/j.jnucmat.2014.06.051
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed