Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (2): 359-382   https://doi.org/10.1007/s11708-018-0546-2
  本期目录
固体氧化物燃料电池在清洁能源领域的成就与发展:趋势综述
ABDALLA Abdalla M.1,2(), HOSSAIN Shahzad1,3, PETRA Pg MohdIskandr4, GHASEMI Mostafa5, AZAD Abul K.4
1. Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong BE 1410, Brunei Darussalam
2. Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt
3. Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, GPO Box No 3787, Dhaka 1000, Bangladesh
4. Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong BE 1410, Brunei Darussalam
5. Petroleum Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review
Abdalla M. ABDALLA1,2(), Shahzad HOSSAIN1,3, Pg MohdIskandr PETRA4, Mostafa GHASEMI5, Abul K. AZAD4
1. Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong BE 1410, Brunei Darussalam
2. Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt
3. Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, GPO Box No 3787, Dhaka 1000, Bangladesh
4. Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong BE 1410, Brunei Darussalam
5. Petroleum Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 31750 Tronoh, Perak, Malaysia
 全文: PDF(5349 KB)   HTML
摘要:

在当今世界尤其是能源领域,清洁、有效和持久的能源都备受关注。这三个方面也是科学家的主要关注目标。然而,化石能源和可持续能源等各类型能源在能源转换、储存和能效方面仍面临一些挑战。因此,眼下最可靠的能源应该是一种尽可能高效、清洁且能被永久利用的能源。本综述重点强调一种有前途的清洁高效能源类型,即固体氧化物燃料电池(SOFC),这是以氢气和碳氢化合物为燃料的燃料电池中效率最高的一种,尤其是在热电联产(CHP)下工作时。这种燃料电池的重要性在于其通过化学反应发电时无噪音,无污染,并且安全。

Abstract

The main concerns in the world today, especially in the energy field, are subjected to clean, efficient, and durable sources of energy. These three aspects are the main goals that scientist are paying attention to. However, the various types of energy resources include fossil and sustainable ones, but still some challenges are chasing these kinds from energy conversion, storage, and efficiency. Hence, the most reliable and considered energy resource nowadays is the utilized one which is as highly efficient, clean, and everlasting as possible. So, in this review, an attempt is made to highlight one of the promising types as a clean and efficient energy resource. Solid oxide fuel cell (SOFC) is the most efficient type of the fuel cell types involved with hydrogen and hydrocarbon-based fuels, especially when it works with combined heat and power (CHP). The importance of this type is due to its nature of work as conversion tool from chemical to electrical for generation of power without noise, pollution, and can be safely handled.

Key wordssolid oxide fuel cells (SOFCs)    clean energy    design    micro-scale    nano-scale    performance
收稿日期: 2017-04-20      出版日期: 2020-06-22
通讯作者: ABDALLA Abdalla M.     E-mail: abdalla.m.a1984@gmail.com
Corresponding Author(s): Abdalla M. ABDALLA   
 引用本文:   
ABDALLA Abdalla M., HOSSAIN Shahzad, PETRA Pg MohdIskandr, GHASEMI Mostafa, AZAD Abul K.. 固体氧化物燃料电池在清洁能源领域的成就与发展:趋势综述[J]. Frontiers in Energy, 2020, 14(2): 359-382.
Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Front. Energy, 2020, 14(2): 359-382.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0546-2
https://academic.hep.com.cn/fie/CN/Y2020/V14/I2/359
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Scientists Year Achievements Ref.
Nicolas and Carlisle 1800 Described the electrolysis of water [21]
Grove 1838 Created the first gas battery [2224]
Monde and Langer 1889 Conducted experiments on hydrogen fuel cells [22]
Ostwald 1893 Described theoretical performance of fuel cells [22,23]
Jacquse 1896 Developed first fuel cell [22]
Buar and Preis 1921 Experimented with high-temperature solid oxide electrodes [22]
Bacon 1939 Researched alkaline fuel cells [22]
DuPont, Parkersburg, West Virginia 1950 Teflon is used in membranes [22,23,25]
Grubb 1955 Developed a sulfonated PEMFC [22,23]
Brores and Ketelar 1958 Built a molten carbonate fuel cell [22]
Central Technical Institute 1959 Researched SOFCs [22]
IFC, Windsor Connecticut 1960 Developed a fuel cell power plant for the Apollo spacecraft [22]
Elmore and Tanner 1961 Phosphoric acid fuel cell [22]
IFC, Windsor Connecticut 1970 Oil crises, and developed a more powerful alkaline fuel cell for NASA’s space shuttle Orbiter [22,25]
NASA jet propulsion 1990 First direct methanol fuel cell [22,23]
Bauch up power 2007 Fuel cell being to be commercially sold as APU & stationary equipment’s power generation. [22,25]
Honda 2008 Announced first mass production of fuel cell cars FCX clarity [25]
Portable fuel cell chargers 2009 Residential micro fuel cell-CHP become commercially available in Japan [25]
Tab.1  
Fig.5  
Fig.6  
Parameters Type of fuel cell
PEMFC AFC PAFC MCFC SOFC Ref.
Electrolyte Hydrated polymeric ion exchange membranes Mobilised or immobilized potassium hydroxide in asbestos
matrix
Immobilised liquid phosphoric acid in SiC Immobilised liquid molten carbonate in LiAlO2 Perovskites (ceramics) [25,31]
Electrodes Carbon Transition metals Carbon Nickel and nickel oxide Perovskite and perovskite/metal cermet [25,32]
Catalyst Platinum Platinum Platinum Electrode material Electrode material [3336]
Interconnect Carbon or
metal
Metal Graphite Stainless steel or nickel Nickel, ceramic, or steel [25,37]
Operating temperature/°C 40–80 65–220 205 650 600–1000 [25,31]
Charge carrier H+ OH- H+ CO3 = O = [25,38]
External reformer for hydrocarbon fuels Yes Yes Yes No, for some fuels No, for some fuels and cell designs [25,39]
External shift conversion of CO to
hydrogen
Yes+ purification to remove trace CO Yes+ purification to remove CO and CO2 Yes No No [38,40]
Prime cell components Carbon-based Carbon-based Graphite-based Stainless-based Ceramic [25,31]
Product water management Evaporative Evaporative Evaporative Gaseous product Gaseous product [25,31]
Product heat management Process gas+ liquid cooling medium Process gas+ electrolyte circulation Process gas+ liquid cooling medium or steam generation Internal reforming+ process gas Internal reforming+ process gas [25,31]
Tab.2  
Design Fabrication method
Electrolyte Electrodes Interconnect
Tubular concept CVD/EVD, plasma spraying Slurry coating, plasma spraying, CVD/EVD EVD, plasma spraying
Monolithic Calender rolling, laminating, co-sintering Calender rolling, laminating, co-sintering Calender rolling, laminating, co-sintering
Planar Tape casting, calender rolling Screen printing, slurry coating Ceramic or metal processing
Roller Tape casting/co-sintering Tape casting/co-sintering Tape casting/co-sintering
Tab.3  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Materials DC conductivity/(S?cm-1) Advantage/disadvantage Ref.
Sc0.1Y0.1Zr0.6Ti0.2O1.9 0.14 Operate at high temperature [51]
La0.8Sr0.2Fe0.8Cr0.2O3 0.5 Low conductivity [52]
La0.8Sr0.2Cr0.95Ru0.05O3 0.6 Expensive [8,53]
(La0.7Sr0.3)1–xCexCr1–xNixO3 5.03 Carbon deposition [54]
Sr0.88Y0.08TiO3 64 High operating temperature [55]
CrTi2O5 177 Expensive [8,56]
Ni-YSZ 250 High operating temperature [57]
Ti0.34Nb0.66O2 340 Very expensive [58]
LaSrTiO2 360 No compatibility [59]
Ni-SDC 573 Coke formation [8,60]
Ni-GDC 1070 Coke formation, and electronic performance degradation [8,61]
Cu-CeO2 5200 Improved electronic conductivity [8,62]
Cu-GDCCrTi2O5 8500 Good thermal expansion, and electronic performance [8,63]
Tab.4  
Composition TEC × 10-6/k-1 T/°C se/(S?cm-1)
La0.8Sr0.2MnO3 11.8 900 300
La0.7Sr0.3MnO3 11.7 800 240
La0.6Sr0.4MnO3 13 800 130
Pr0.6Sr0.4MnO3 12 950 220
La0.8Sr0.2CoO3 19.1 800 1220
La0.6Sr0.4CoO3 20.5 800 1600
La0.8Sr0.2FeO3 12.2 750 150
La0.5Sr0.5FeO3 - 550 352
- 800 369
La0.6Sr0.4FeO3 16.3 800 129
Pr0.5Sr0.2FeO3 13.2 550 300
Pr0.8Sr0.2FeO3 12.1 800 78
La0.7Sr0.3Fe0.8Ni0.2O3 13.7 750 290
La0.8Sr0.2Co0.2Fe0.8O3 20.1 600 1050
La0.8Sr0.2Co0.2Ni0.8O3 15.4 600 125
La0.8Sr0.2Co0.2Mn0.2O3 18.1 500 1400
La0.6Sr0.4Co0.8Fe0.2O3 21.4 800 269
La0.6Sr0.4Co0.2Fe0.8O3 15.3 600 330
La0.4Sr0.6Co0.2Fe0.8O3 16.8 600
La0.8Sr0.2Co0.2Fe0.8O3 14.8 800 87
La0.2Sr0.8Co0.8Fe0.2O3 19.3 800 1000
La0.6Sr0.4Co0.9Fe0.1O3 19.2 700 1400
Pr0.8Sr0.3Co0.2Fe0.8O3 12.8 800 76
Pr0.7Sr0.3Co0.2Fe0.8O3 11.1 800 200
Pr0.6Sr0.4Co0.8Fe0.2O3 19.69 550 950
Pr0.4Sr0.6Co0.8Fe0.2O3 21.33 550 600
Pr0.7Sr0.3Co0.9Fe0.1O3 - 700 1236
Ba0.5Sr0.5Co0.8Fe0.2O3 20 500 30
Sm0.5Sr0.5CoO3 20.5 700-900 >1000
LaNi0.6Fe0.4O3 11.4 800 580
Sr0.9Ce0.1Fe0.8Ni0.2O3 18.9 800 87
Tab.5  
Fig.12  
Structure Lattice Chemical formula
Caesiumchloride SC AX
Rock salt FCC AX
Fluorite FCC AX2
Silicates FCC AX2
Corundum Hexagonal A2X3
Perovskites SC ABX3-A2B2X6
Spinel FCC AB2X4
Diamond FCC
Graphite Hexagonal
Tab.6  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Anode Cathode Electrolyte Substrate Temperature/°C Ref.
Pt Pt 8YSZ Foturan, silicon wafer 450–550 [103]
Ni LSCF GDC - 450–550 [113]
Ni LSM 8YSZ - 400–700 [114]
Pt Pt, LSCF 8YSZ Foturan, glass-ceramic 400–600 [115]
Pt Pt 8YSZ Silicon wafer, SiO2 500 [116]
Pt Pt 8YSZ Silicon wafer, Si3N4 350–400 [117]
Pt Pt 8YSZ, CGO Silicon wafer, Si3N4 350 [118]
Ru Pt 8YSZ Silicon wafer, Si3N4 265–350 [119]
Pt Pt 8YSZ Silicon wafer, Si3N4 400–450 [120]
Ni Pt, LSCF CGO Ni plate 450 [121]
Ni Pt 8YSZ Porous Ni 370–400 [122]
Ni+ SDC BSCF+ SDC SDC - 500–600 [123]
Tab.7  
Anode Cathode Electrolyte Substrate Temperature/°C Ref.
Ni - GDC(LiNa)C3 - 450–550 [127]
Ni LSM-YSZ ScSZ - 700 [128]
- LSCF-GDC GDC - 650–850 [129]
Pt LSCF YSZ Silicon wafer, Si3N4 450–500 [130]
Ni-SDC SSC ScSZ - 600–700 [131]
Ru Pt CGO-YSZ - 470–520 [132]
Pt Pt YSZ 350–500 [133]
Ni Pt YSZ - 600 [134]
Tab.8  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
SOFCs parameters Merits/strength Limitation/weakness Opportunity/availability Threat/handling
Cost * *
Efficiency *
Power density *
Fuel utilization * *
Degradation rate *
Materials * * * *
Design * * * *
Manufacturability * *
Durability * * *
Environmental impact * * *
Modularity * *
Scalability *
Economic entitlement * *
Applications * * * *
Transportation and storage * *
Technological developments * * *
Life time * *
Tab.9  
1 S Pfenninger, J Keirstead. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Applied Energy, 2015, 152:83–93
https://doi.org/10.1016/j.apenergy.2015.04.102
2 P L C Johnson Matthey. Fuel cell today. 2016–12–10, available at the website of fuelcelltoday.com/history
3 J Jeong, A K Azad, H Schlegl, B Kim, S Baek, K Kim, H Kang, J Hyun. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell. Journal of Solid State Chemistry, 2015, 226:154–163
https://doi.org/10.1016/j.jssc.2015.02.001
4 F F Chen. The Future of Energy I: Fossil Fuels. New York: Springer, 2011: 43–73
5 N H Menzler, F Tietz, S Uhlenbruck, H P Buchkremer, D Stöver. Materials and manufacturing technologies for solid oxide fuel cells. Journal of Materials Science, 2010, 45(12): 3109–3135
https://doi.org/10.1007/s10853-010-4279-9
6 S M Haile. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000
https://doi.org/10.1016/j.actamat.2003.08.004
7 P L C Johnson Matthey. Fuel cell today: the fuel cell industry review 2013. 2017–1–20,
8 S P Jiang, S H Chan. A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 2004, 39(14): 4405–4439
9 J Suntivich, H A Gasteiger, N Yabuuchi, H Nakanishi. J B, Y Shao-Horn. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chemistry, 2011, 3(8): 647
https://doi.org/10.1038/nchem.1069
10 A K Azad, J H Kim, J T S Irvine. Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+δ perovskite. Journal of Solid State Chemistry, 2014, 213: 268–274
https://doi.org/10.1016/j.jssc.2014.03.008
11 A Azad, J Irvine. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3−d. Solid State Ionics, 2008, 179(19–20): 678–682
https://doi.org/10.1016/j.ssi.2008.04.036
12 J Rossmeisl, W G Bessler. Trends in catalytic activity for SOFC anode materials. Solid State Ionics, 2008, 178(31–32): 1694–1700
https://doi.org/10.1016/j.ssi.2007.10.016
13 S Satyapal. Expanding the use of biogas with fuel cell technologies. National Renewable Energy Laboratory, 2013, 7: 1–42
14 A Tarancón, M Burriel, J Santiso, S J Skinner, J A Kilner. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20(19): 3799–3813
https://doi.org/10.1039/b922430k
15 L Lu, C Ni, M Cassidy, T S I John. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3. Journal of Materials Chemistry A, 2016, 4(30): 11708–11718
https://doi.org/10.1039/C6TA04074H
16 F F Chen. The Future of Energy I: Chapter 2. Fossil Fuels. New York: Springer, 2011: 53–63
17 Y Chen, W Zhou, D Ding, M Liu, F Ciucci, M Tade, Z Shao. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Advanced Energy Materials, 2015, 5(18): 15005–15037
https://doi.org/10.1002/aenm.201500537
18 Z Gao, L Mogni, E C Miller, J Railsback, S A Barnet. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644
https://doi.org/10.1039/C5EE03858H
19 H H Möbius. High Temperature and Solid Oxide Fuel Cells: Chapter 2- History. Oxford: Elsevier, 2003: 23–51
https://doi.org/10.1016/B978-185617387-2/50019-2
20 B Cook. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216
https://doi.org/10.1049/esej:20020601
21 J M Andjar, F Segura. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322
https://doi.org/10.1016/j.rser.2009.03.015
22 Smithsonian Institution. Fuel cell origins: 1840–1890. 2015–12–10,
23 National Aeronautics and Space Administration. Solid oxid fuel cells and electrolysis membranes. 2010–2–2,
24 J H Gross. Fuel cell technology. Joint Legislative air and water pollution committee, 2002, 2(1): 1–7
25 US. Department of Energy. Fuel Cell Handbook. University Press of the Pacific, 2005
26 A Tesfai, T S I John. Solid oxides fuel cells: theory and material. Comprehensive Renewable Energy, 2012, 38(48): 261–276
27 J R Frade. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1–2): 87–97
https://doi.org/10.1016/0167-2738(95)00008-T
28 F Tietz, H P Buchkremer, D Stöver. 10 years of materials research for solid oxide fuel cells. Journal of Electroceramics, 2006, 17(2–4): 701–707
29 X Huang, C Ni, G Zhao, T S I John. Oxygen storage capacity and thermal stability of the CuMnO2–CeO2 composite system. Journal of Materials Chemistry A, 2015, 3(24): 12958–12964
30 ChemViews. Fuel cell capacity and cost trends. 2017–1–5,
31 Föger K. Materials basics for fuel cells. Materials for Fuel Cells, 2008, 14(4): 6–63
https://doi.org/10.1533/9781845694838.6
32 Patent Elseveir. Materials, processes for producing fuel cells and active membranes. Fuel Cells Bulletin, 2001, 4(34):14
https://doi.org/10.1016/S1464-2859(01)80347-3
33 Patent Elseveir. Electrocatalyst particles for fuel cells. Focus on Catalysts, 2009, 2009(2): 8
https://doi.org/10.1016/S1351-4180(09)70048-0
34 E Rikkinen, A Santasalo-Aarnio , S Airaksinen , M Borghei , V Viitanen, J Sainio, E I Kauppinen, T Kallio, A Outi, I Krause . Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation. Journal of Physical Chemistry C, 2011, 115(46): 23067
35 E S Smotkin, K L Ley, C Pu, R Liu. Catalysts for direct oxidation fuel cells. USA Patent, WO98/40161, 1998–09–17
36 Metodiev T V. Gold catalyst for fuel cells. Fuel Cells Bulletin, 1999, 29): 16
https://doi.org/10.1016/S1464-2859(00)80104-2
37 Elseveir News. Materials for fuel cells examined. Membrane Technology, 2008, 2008(10): 8
https://doi.org/10.1016/S0958-2118(08)70208-8
38 K Sundmacher, R Hanke-Rauschenbach, P Heidebrecht, L, Rihko-Struckmann T Vidaković-Koch. Some reaction engineering challenges in fuel cells: dynamics integration, renewable fuels, enzymes. Current Opinion in Chemical Engineering, 2012, 13): 328–335
https://doi.org/10.1016/j.coche.2012.02.003
39 K Hemmes, L M Kamp, A B H Vernay, G de Werk. A multi-source multi-product internal reforming fuel cell energy system as a stepping stone in the transition towards a more sustainable energy and transport sector. International Journal of Hydrogen Energy, 2011, 36(16): 10221–10227
https://doi.org/10.1016/j.ijhydene.2010.11.017
40 S Bengt, F Juan. Heat Transfer in Aerospace Applications Chapter 8–Fuel Cells. London: Elsevier, 2017: 145–153
https://doi.org/10.1016/B978-0-12-809760-1.00008-9
41 M Irshad, K Siraj, R Raza, A Ali, P Tiwari, B Zhu, A Rafique, U Kaleem, A Usman. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 2016, 6(3): 75
https://doi.org/10.3390/app6030075
42 S C Singhal. Solid oxide fuel cells: an overview. Preprint Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 478
43 W J Dollard . Solid oxide fuel cell development at Westinghouse. Journal of Power Sources, 1992, 37(1–2): 133–139
https://doi.org/10.1016/0378-7753(92)80070-R
44 N Laosiripojana, W Wiyaratn, W Kiatkittipong, A Arpornwichanop, A Soottitantawat, S. Assabumrungrat Review on solid oxide fuel cell technology. Engineering Journal, 2009, 13(1): 0125– 8281
https://doi.org/10.4186/ej.2009.13.1.65
45 A Tesfai, P Connor, J Nairn, J T S Irvine. Thermal cycling evaluation of rolled tubular solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 2011, 8(6): 061001
https://doi.org/10.1115/1.4004638
46 X M Ge, S H Chan, Q L Liu, Q Sun. Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Advanced Energy Materials, 2012, 2(10): 1156–1181
https://doi.org/10.1002/aenm.201200342
47 S R Bharadwaj, S Varma, B N Wani. Electroceramics for fuel cells, batteries and sensors. In: Functional Materials, 2012: 639–674
https://doi.org/10.1016/B978-0-12-385142-0.00016-7
48 M Michalovic. Fuel cells oxidation reaction. ChemMatters, 2007: 16–19
49 M Gasik. Materials for Fuel Cells. Cambridge: Woodhead Publishing Limited, 2008
50 S P S Shaikh, A Muchtar, M R Somalu. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8
https://doi.org/10.1016/j.rser.2015.05.069
51 S Tao, J T S Irvine. Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. Journal of Solid State Chemistry, 2002, 165(1): 12–18
https://doi.org/10.1006/jssc.2001.9477
52 A K Azad, J Zaini, P I Petra, L C Ming , S G Eriksson. Effect of Nd-doping on structural, thermal and electrochemical properties of LaFe0.5Cr0.5O3 perovskites. Ceramics International, 2016, 42(3): 4532–4538
https://doi.org/10.1016/j.ceramint.2015.11.144
53 S Lee, J Bae, S P Katikaneni. La0.8Sr0.2Cr0.95Ru0.05O3−x and Sm0.8Ba0.2Cr0.95Ru0.05O3−x as partial oxidation catalysts for diesel. International Journal of Hydrogen Energy, 2014, 39(10): 4938–4946
https://doi.org/10.1016/j.ijhydene.2014.01.106
54 N H Menzler, D Sebold, E Wessel. Interaction of La0.58Sr0.40 Co0.20Fe0.80O3−δ cathode with volatile Cr in a stack test—scanning electron microscopy and transmission electron microscopy investigations. Journal of Power Sources, 2014, 254: 148–152
https://doi.org/10.1016/j.jpowsour.2013.12.066
55 Sun X F, Wang S R, Wang Z R, Qian J Q, Wen T L, Huang F Q. Evaluation of Sr0.88Y0.08TiO3–CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. Journal of Power Sources, 2009, 187(1): 85–89
https://doi.org/10.1016/j.jpowsour.2008.10.067
56 H J Steiner, P H Middleton, B C H Steele. Ternary titanates as anode materials for solid oxide fuel cells. Journal of Alloys and Compounds, 1993, 190(2): 279–285
https://doi.org/10.1016/0925-8388(93)90412-G
57 M H Pihlatie, A Kaiser, M B Mogensen. Electrical conductivity of Ni–YSZ composites: variants and redox cycling. Solid State Ionics, 2012, 222–223(222): 38–46
https://doi.org/10.1016/j.ssi.2012.06.021
58 K Safeen, V Micheli, R Bartali, G Gottardi, A Safeen, H Ullah, N Laidani. Synthesis of conductive and transparent Nb-doped TiO2 films: role of the target material and sputtering gas composition. Materials Science in Semiconductor Processing, 2017, 66: 74–80
https://doi.org/10.1016/j.mssp.2017.04.012
59 J Han, Q Sun, Y Song. Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. Journal of Alloys and Compounds, 2017, 705: 22–27
https://doi.org/10.1016/j.jallcom.2017.02.146
60 A Ideris, E Croiset, M Pritzker. Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO. International Journal of Hydrogen Energy, 2016, 42(14): 9180–9187
https://doi.org/10.1016/j.ijhydene.2016.05.203
61 A Gondolini, E Mercadelli, A Sangiorgi, A Sanson. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 2017, 37(3): 1023–1030
https://doi.org/10.1016/j.jeurceramsoc.2016.09.021
62 V Sarıboğa, M A Faruk Oksüzomer. Cu-CeO2 anodes for solid oxide fuel cells: determination of infiltration characteristics. Journal of Alloys and Compounds, 2016, 688: 323–331
https://doi.org/10.1016/j.jallcom.2016.07.217
63 N Light, O Kesler. Air plasma sprayed Cu-Co-GDC anode coatings with various Co loadings. Journal of Power Sources, 2013, 233: 157–165
https://doi.org/10.1016/j.jpowsour.2013.01.050
64 N Droushiotis, F D Grande, M H Dzarfan Othman, K Kanawka, U Doraswami, I S Metcalfe, K Li, G Kelsall. Comparison between anode-supported and electrolyte-supported Ni-CGO-LSCF micro-tubular solid oxide. Fuel Cells (Weinheim), 2014, 14(2): 200–211
https://doi.org/10.1002/fuce.201300024
65 K C Patil, M S Hegde, T Rattan, S T Aruna. Zirconia and related oxide materials. Chemistry of Nanocrystalline Oxide Materials, 2008: 212–225
66 S Hossain, A M Abdalla, S N B Jamain, J H Zaini, A K Azad. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764
https://doi.org/10.1016/j.rser.2017.05.147
67 M Brochu, R E Loehman. Hermetic sealing of solid oxide fuel cells. Microjoining and Nanojoining, 2000: 718–740
https://doi.org/10.1533/9781845694043.3.718
68 B C H Steele, A Heinzel. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
https://doi.org/10.1038/35104620 pmid: 11713541
69 S M Haile. Materials for fuel cells. Materials today, 2003, 6(3): 24–29
70 C Sun, R Hui, J Roller. Cathode materials for solid oxide fuel cells. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144
https://doi.org/10.1007/s10008-009-0932-0
71 Y N Kim, J H Kim, A Huq, M P Paranthaman, A Manthiram. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells. Journal of Power Sources, 2012, 214(4): 7–14
https://doi.org/10.1016/j.jpowsour.2012.03.050
72 N M Sammes, B R Roy. Reference module in chemistry, molecular sciences and chemical engineering. Encyclopedia of Electrochem Power Sources, 2009, 25–33
73 B P McCarthy, L R Pederson, Y S Chou, X D Zhou, W A Surdoval, L C Wilson. Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. Journal of Power Sources, 2008, 180(1): 294–300
https://doi.org/10.1016/j.jpowsour.2008.01.097
74 D L Meixner, R A Cutler. Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics, 2002, 146(3–4): 273–284
https://doi.org/10.1016/S0167-2738(01)01027-X
75 P Khandale, R P Lajurkar, S S Bhoga. Nd1.8Sr0.2NiO4−δ:Ce0.9Gd0.1O2−δ composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(33): 19039–19050
https://doi.org/10.1016/j.ijhydene.2014.09.052
76 C Jeong, J H Lee, M Park, J Hong, H Kim, J W Son, J H Lee, B K Kim, K J Yoon. Design and processing parameters of La2NiO4+δ–based cathode for anode-supported planar solid oxide fuel cells (SOFCs). Journal of Power Sources, 2015, 297: 370–378
https://doi.org/10.1016/j.jpowsour.2015.08.023
77 F Meng, T Xia, J Wang, Z Shi, H Zhao. Praseodymium-deficiency Pr0.94BaCo2O6−δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750
https://doi.org/10.1016/j.jpowsour.2015.06.007
78 R Jarot, A Muchtar, W R W Dawoud, N Muhamad, E H Majlanlie. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications. Key Engineering Materials, 2011, 471–472: 179–184
https://doi.org/10.4028/www.scientific.net/KEM.471-472.179
79 J H Kim, M Cassidy, J T S Irvine, J Bae. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+δ (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689
https://doi.org/10.1149/1.3110989
80 K C Wincewicz, J S Cooper. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005, 140(2): 280–296
https://doi.org/10.1016/j.jpowsour.2004.08.032
81 A Bastawors. Crystal structure metals-ceramics: material science and engineering. 2001–1–31,
82 B Bhushan. Scanning Probe Microscopy in Nanoscience and Nanotechnology: Chapter 17. Berlin: Springer, 2009: 615
83 M A Peña, J L G Fierro. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018
https://doi.org/10.1021/cr980129f pmid: 11710238
84 J Luxová, P Šulcová, M Trojan. Study of perovskite compounds. Thermal Analysis and Calorimetry, 2008, 93(3): 823–827
https://doi.org/10.1007/s10973-008-9329-z
85 A S, R, R. The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 2000, 4(1): 3–26
86 M Johnsson, P Lemmens. Introduction to advanced ceramics. Cornel Digital Library, 2001: 1–11
87 A K Azad. Synthesis, structure and magnetic properties of double perovskite of the type A2MnBO6. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2004
88 J Andreassson. Inelastic light scattering study of strongly correlated oxides. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2005
89 Materials Research Science and Engineering Centers. 2016–6–20,
90 K I Kobayashi, H Sawada , K Terakura. Room-temperature magneto resistance in an oxide material with an ordered double-perovskite structure. Nature, 1998, 395(6703): 677–680
https://doi.org/10.1038/27167
91 T S Dasgupta. Materials Modeling. 2015–9–15,
92 Witczakkrempa W, Gang C, Yong B K, Balents L. Correlated quantum phenomena in the strong spin-orbit regime. Annual Review of Condensed Matter Physics, 2013, 5(1): 57–82
https://doi.org/10.1146/annurev-conmatphys-020911-125138
93 GRACE Communications Foundation. Fossil fuel and energy use. 2009,
94 D F Cheddie. Integration of a solid oxide fuel cell into a 10 MW gas turbine power plant. Energies, 2010, 3(4): 754–769
https://doi.org/10.3390/en3040754
95 H Yokokawa, H H Tu, B Iwanschitz, A Mai. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412
https://doi.org/10.1016/j.jpowsour.2008.02.016
96 J B Goodenough. Electrochemical energy storage in a sustainable modern society. Energy & Environmental Science, 2013, 7(1): 14–18
https://doi.org/10.1039/C3EE42613K
97 A B Stambouli, E Traversa. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455
https://doi.org/10.1016/S1364-0321(02)00014-X
98 V M Orera, M A Laguna-Bercero, A Larrea. Fabrication methods and performance in fuel cell and steam electrolysis operation modes of small tubular solid oxide fuel cells: a review. Frontiers in Energy Research, 2014, 2: 1–13
https://doi.org/10.3389/fenrg.2014.00022
99 G Kreysa , K I Ota , R F Savinell. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014
100 V V Karton. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley, 2011
101 F B Prinz, R O Hayre, M Lee. Micro and nano scale electrochemistry: application to fuel cells. GCEP Technical Report, 2004
102 INDUSTRY CERAMIC. CERAMIC ENERGY: Advances in SOFC materials and manufacturing. 2004–9–1,
103 A Bieberle-Hütter, H Galinski, J L M Rupp, T Ryll, B Scherrer, R Tölke, L J Gauckler. Micro-solid oxide fuel cells: status, challenges, and chances. Monatshefte für Chemie, 2009, 140(9): 975–983
https://doi.org/10.1007/s00706-009-0107-9
104 M A Abdalla, S Hossain, A T Azad, P M I Petra, F Begum, S G Eriksson, A K Azad. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368
https://doi.org/10.1016/j.rser.2017.09.046
105 B Cook. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216
https://doi.org/10.1049/esej:20020601
106 S K Mazumder, K Acharya, C L Haynes, R Williams, M R von Spakovsky, D J Nelson, D F Rancruel, J Hartvigsen, R S Gemmen. Solid-oxide-fuel-cell performance and durability: resolution of the effects of power- conditioning systems and application loads. IEEE Transactions on Power Electronics, 2004, 19(5): 1263–1278
https://doi.org/10.1109/TPEL.2004.833992
107 M Boder, R Dittmeyer. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources, 2006, 155(1): 13–22
https://doi.org/10.1016/j.jpowsour.2004.11.075
108 A Weber, E Ivers-Tiffée. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004, 127(1–2): 273–283
https://doi.org/10.1016/j.jpowsour.2003.09.024
109 J D Morse, A F Jankowski, J P Hayes, R T Graff. A novel thin film solid oxide fuel cell for microscale energy conversion. Micromachined Devices Components V, 1999, 3876: 223–226
https://doi.org/10.1117/12.360497
110 S Rey-mermet, P Muralt. Microfabricated solid oxide fuel cells. Epfl, 2009, 56(2):498–500
https://doi.org/10.5075/epfl-thesis-4175
111 A Evans, A Bieberle-Hütter, J L M Rupp, L J Gauckler. Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 2009, 194(1): 119–129
https://doi.org/10.1016/j.jpowsour.2009.03.048
112 A Bieberle-Hütter, D Beckel, A Infortuna, U P Muecke, J L M Rupp, L J Gauckler , S Rey-Mermet, P Muralt, N R, Bieri N Hotz, M J Stutz, D Poulikakos, P Heeb, P Müller, A Bernard, R Gmüre, T Hocker. A micro-solid oxide fuel cell system as battery replacement. Journal of Power Sources, 2008, 177(1): 123–130
https://doi.org/10.1016/j.jpowsour.2007.10.092
113 N Sammes, K Galloway, T Yamaguchi, M Serincan. Concept, manufacture and results of the microtubular solid oxide fuel cell. Transactions on Electrical and Electronic Materials, 2011, 12(1): 1–6
https://doi.org/10.4313/TEEM.2011.12.1.1
114 B Zhu. Advanced hybrid ion conducting ceramic composites and applications in new fuel cell generation. Key Engineering Materials, 2007, 280–283: 413–418
https://doi.org/10.4028/www.scientific.net/KEM.280-283.413
115 U P Muecke, D Beckel, A Bernard, H A Bieberle, S Graf, A Infortuna. Micro solid oxide fuel cells on glass ceramic substrates. Advanced Functional Materials, 2010, 18(20):3158–3168
https://doi.org/10.1002/adfm.200700505
116 S Rey-Mermet, P Muralt. Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics, 2008, 179(27–32): 1497–1500
https://doi.org/10.1016/j.ssi.2008.01.007
117 H Huang, M Nakamura, P Su, R Fasching, Y Saito, F B Prinz. High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of the Electrochemical Society, 2007, 154(1): B20–B24
118 J H Shim, C C Chao, H Huango, F B Prinz. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Material, 2007, 19(15): 3850–3854
https://doi.org/10.1021/cm070913t
119 C W Kwon, J Lee, K B Kim, H W Lee, J H Lee, J W Son. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. Journal of Power Sources, 2012, 210(210): 178–183
https://doi.org/10.1016/j.jpowsour.2012.03.020
120 P C Su, C C Chao, J H Shim, R Fasching, F B Prinz. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 2008, 8(8): 2289
https://doi.org/10.1021/nl800977z
121 J H Joo, G M Choi. Simple fabrication of micro-solid oxide fuel cell supported on metal substrate. Journal of Power Sources, 2008, 182(2): 589–593
https://doi.org/10.1016/j.jpowsour.2008.03.089
122 S Kang, P C Su, Y I Park, Y Saito, F B Prinz. Thin film solid oxide fuel cells on porous nickel substrates with multistage nanohole array. Journal of the Electrochemical Society, 2006, 153(3): A554–A559
123 Z Shao, S M Haile, J Ahn, P D Ronney, Z Zhan, S A Barnett. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435(7043): 795–798
https://doi.org/10.1038/nature03673 pmid: 15944699
124 T N Valadez, J R Norton, M C Neary. Reaction of Cp* (Cl)M(Diene) (M= Ti, Hf) with Isonitriles. Journal of the American Chemical Society, 2015, 137(32): 10152–10155
https://doi.org/10.1021/jacs.5b06654
125 T Z Sholklapper, Kurokawa H, Jacobson C P, Visco S J, de Jonghe L C. Nanostructured solid oxide fuel cell electrodes. Nano Letters, 2006, 7(7): 2136–2141
https://doi.org/10.1021/nl071007i
126 N Sata, K Eberman, K Eberl, J Maier. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000, 408(6815): 946–949
https://doi.org/10.1038/35050047 pmid: 11140675
127 R Chockalingam, S Basu. Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3 nano composite electrolytes for low temperature SOFC applications. International Journal of Hydrogen Energy, 2011, 36(22): 14977–14983
https://doi.org/10.1016/j.ijhydene.2011.03.165
128 J H Myung, T H Shin, S D Kim, H G Park, J Moon, S H Hyun. Optimization of Ni-zirconia based anode support for robust and high-performance 5×5 cm2 sized SOFC via tape-casting/co-firing technique and nano-structured anode. International Journal of Hydrogen Energy, 2015, 40(6): 2792–2799
https://doi.org/10.1016/j.ijhydene.2014.12.077
129 M Shah, P W Voorhees, S A Barnett. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics, 2011, 187(1): 64–67
https://doi.org/10.1016/j.ssi.2011.02.003
130 M Tsuchiya, B K Lai, S Ramanathan. Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 2011, 6(5): 282
131 H Zhang, F Zhao, F Chen, C Xia. Nano-structured Sm0.5Sr0.5CoO3−δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192(1): 591–594
https://doi.org/10.1016/j.ssi.2010.05.024
132 K Kerman, B Lai, S Ramanathan. Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Advanced Energy Materials, 2012, 2(6): 655–655
https://doi.org/10.1002/aenm.201100751
133 X Wang, H Huang, T Holme, X Tian, F B Prinz. Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. Journal of Power Sources, 2008, 175(1): 75–81
https://doi.org/10.1016/j.jpowsour.2007.09.066
134 Y C Gu, Y H Lee, S W Cha. Multi-component nano-composite electrode for SOFCS via thin film technique. Renewable Energy, 2014, 65(5):130–136
https://doi.org/10.1016/j.renene.2013.07.044
135 Y Lin, S B Beale. Performance predictions in solid oxide fuel cells. Applied Mathematical Modelling, 2006, 30(11): 1485–1496
https://doi.org/10.1016/j.apm.2006.03.009
136 Endless Sphere Electric Vehicle and Technology Forum. EV business world. 2016–8–1,
137 Osaka Gas CO., LTD. Principle of SOFC power generation. 2017–2–10,
138 Hydrogen Fuel Cell Engines and Related Technologies Course. 2015–9–10,
139 B Dawoud, E Amer, D Gross. Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 2010, 31(2): 135–147
https://doi.org/10.1002/er.1235
140 V Vibhu, A Rougier, C Nicollet, A Flura, S Fourcade, N Penin, J C Grenier, J M Bassat. Pr4Ni3O10+δ: a new promising oxygen electrode material for solid oxide fuel cells. Journal of Power Sources, 2016, 317: 184–193
https://doi.org/10.1016/j.jpowsour.2016.03.012
141 H Shimada, T Yamaguchi, T Suzuki, H Sumi, K Hamamoto, Y Fujishiro. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2016, 302: 308–314
https://doi.org/10.1016/j.jpowsour.2015.10.082
142 J H Myung, D Neagu, D N Miller, J T Irvine. Switching on electrocatalytic activity in solid oxide cells. Nature, 2016, 537(7621): 528–531
https://doi.org/10.1038/nature19090 pmid: 27548878
143 S Sengodan, S Choi, A Jun , T H Shin , Y W Ju , H Y Jeong , J Shin , T S I John , G Kim . Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209
https://doi.org/10.1038/nmat4166
144 L Wu, S Wang, S Wang, C Xia. Enhancing the performance of doped ceria interlayer for tubular solidoxide fuel cells. Journal of Power Sources, 2013, 240(240): 241–244
https://doi.org/10.1016/j.jpowsour.2013.04.007
145 Y M Park, H Kim. Composite cathodes based on Sm0.5Sr0.5CoO3Ld with porous Gd-doped ceria barrier layers for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(20):15320–15333
146 F Wang, D Chen, Z Shao. Sm0.5Sr0.5CoO3−δ infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216: 208–215
https://doi.org/10.1016/j.jpowsour.2012.05.068
147 J Qian, Z Zhu, J Dang, G Jiang, W Liu. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria–zirconia bilayer electrolytes on modified anode substrate. Electrochimica Acta, 2013, 92(92): 243–247
https://doi.org/10.1016/j.electacta.2013.01.017
148 C Li, H Chen, H Shi, M O Tade, Z Shao. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273(273): 465–471
https://doi.org/10.1016/j.jpowsour.2014.09.143
149 Z Gao, E C Miller, S A Barnett. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98 (Ga0.8Mg0.2)O3−δ electrolyte and nano-scale. Advanced Functional Materials, 2015, 24(36): 5703–5709
150 H Zhang, F Zhao, F Chen, C Xia. Nano-structured Sm0.5Sr0.5 CoO3−δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192(1): 591–594
https://doi.org/10.1016/j.ssi.2010.05.024
151 M Liu, D Dong, F Zhao, J Gao, D Ding, X Liu, G Meng. High-performance cathode-supported SOFCs prepared by a single-step co-firing process. Journal of Power Sources, 2008, 182(2): 585–588
https://doi.org/10.1016/j.jpowsour.2008.04.039
152 J C Chang, M C Lee, R J Yang, Y C Chang, T N Lin, C H Wang, W X Kao, L S Lee. Fabrication and characterization of Sm0.2Ce0.8O2−δ, Sm0.5Sr0.5CoO3−δ composite cathode for anode supported solid oxide fuel cell. Journal of Power Sources, 2011, 196(6): 3129–3133
https://doi.org/10.1016/j.jpowsour.2010.12.036
153 P Sarmah, T K Gogoi, R Das. Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method. Applied Thermal Engineering, 2017, 119: 98–107
https://doi.org/10.1016/j.applthermaleng.2017.03.060
154 T K Gogoi, M Pandey, R Das. Estimation of operating parameters of a reheat regenerative power cycle using simplex search and differential evolution based inverse methods. Energy Conversion and Management, 2015, 91: 204–218
https://doi.org/10.1016/j.enconman.2014.11.046
155 T K Gogoi, R Das. A combined cycle plant with air and fuel recuperator for captive power application. Part 2: Inverse analysis and parameter estimation. Energy Conversion and Management, 2014, 79(79): 778–789
https://doi.org/10.1016/j.enconman.2013.10.027
156 T K Gogoi, R Das. Inverse analysis of an internal reforming solid oxide fuel cell system using simplex search method. Applied Mathematical Modelling, 2013, 37(10–11): 6994–7015
https://doi.org/10.1016/j.apm.2013.02.046
157 T L Cable, S W Sofie. A symmetrical, planar SOFC design for NASA’s high specific power density requirements. Journal of Power Sources, 2007, 174(1): 221–227
https://doi.org/10.1016/j.jpowsour.2007.08.110
158 J S Park, J An, M H Lee, F B Prinz, W Lee. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells. Journal of Power Sources, 2015, 295: 74–78
https://doi.org/10.1016/j.jpowsour.2015.06.149
159 E V Tsipis, E N Naumovich, M V Patrakeev, A A Yaremchenko, I P Marozau, A V Kovalevsky, J C Waerenborgh, V V Kharton. Oxygen deficiency, vacancy clustering and ionic transport in (La,Sr)CoO3−d. Solid State Ionics, 2011, 192(1): 42–48
https://doi.org/10.1002/pssb.201350217
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed