Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 163-171   https://doi.org/10.1007/s11708-018-0554-2
  本期目录
原位溶胶-凝胶法合成的无机硼硅酸盐/硅酸盐聚合物基体复合离子液的阻燃性能
SMARAN Kumar Sai1, BADAM Rajashekar2, VEDARAJAN Raman3(), MATSUMI Noriyoshi4
1. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan; Division of Chemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
2. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1Asahidai, Nomi, Ishikawa 923-1292, Japan; Surface Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku Nagoya 468-8511, Japan
3. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan; Centre for Fuel Cell Technology, International Advanced Research Center for Powder Metallurgy and New Materials, Chennai, India
4. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid
Kumar Sai SMARAN1, Rajashekar BADAM2, Raman VEDARAJAN3(), Noriyoshi MATSUMI4
1. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan; Division of Chemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
2. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1Asahidai, Nomi, Ishikawa 923-1292, Japan; Surface Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku Nagoya 468-8511, Japan
3. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan; Centre for Fuel Cell Technology, International Advanced Research Center for Powder Metallurgy and New Materials, Chennai, India
4. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
 全文: PDF(1768 KB)   HTML
摘要:

本文重点研究了有机 - 无机杂化离子 - 凝胶电解质的火焰敏感性相对于商用电解质(如1 M LiPF6溶于1:1的碳酸亚乙酯(EC):碳酸二甲酯(DMC){1 M LiPF6-EC:DMC})在锂离子电池运用中的优越性。这些离子凝胶电解质中含有离子液体单体,这些单体被限制在理想的非可燃基质中,如硼硅酸盐或硅酸盐基质。明火实验证实了有机无机杂化电解质对火焰的敏感度较低,这些电解质在遭遇火焰时的重量损失较小。此外,杂化电解质还可以自行熄灭。因此,与其他商用锂离子电池电解质不同,这些杂化电解质仅在接触到明火时才会被氧化。差示扫描量热研究的补充分析表明,在温度达到100 ℃之前,杂化电解质都是玻璃态,这与先前发表的有机-无机杂化电解质得出的数据相一致。

Abstract

This paper focuses on the superiority of organic-inorganic hybrid ion-gel electrolytes for lithium-ion batteries (LiBs) over commercial electrolytes, such as 1 M LiPF6 in 1:1 ethylene carbonate (EC): dimethyl carbonate (DMC) {1 M LiPF6-EC: DMC}, in terms of their flame susceptibility. These ion-gel electrolytes possess ionic liquid monomers, which are confined within the borosilicate or silicate matrices that are ideal for non-flammability. Naked flame tests confirm that the organic-inorganic hybrid electrolytes are less susceptible to flames, and these electrolytes do not suffer from a major loss in terms of weight. In addition, the hybrids are self-extinguishable. Therefore, these hybrids are only oxidized when subjected to a flame unlike other commercial electrolytes used in lithium-ion batteries. Supplementary analyses using differential scanning calorimetric studies reveal that the hybrids are glassy until the temperature reaches more than 100°C. The current results are consistent with previously published data on the organic-inorganic hybrids.

Key wordsinorganic polymeric borosilicate network    organic-inorganic hybrids    self-extinguishability    nonflammability    lithium batteries    flame-retardants
收稿日期: 2017-10-11      出版日期: 2019-03-20
通讯作者: VEDARAJAN Raman     E-mail: raman@jaist.ac.jp
Corresponding Author(s): Raman VEDARAJAN   
 引用本文:   
SMARAN Kumar Sai, BADAM Rajashekar, VEDARAJAN Raman, MATSUMI Noriyoshi. 原位溶胶-凝胶法合成的无机硼硅酸盐/硅酸盐聚合物基体复合离子液的阻燃性能[J]. Frontiers in Energy, 2019, 13(1): 163-171.
Kumar Sai SMARAN, Rajashekar BADAM, Raman VEDARAJAN, Noriyoshi MATSUMI. Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid. Front. Energy, 2019, 13(1): 163-171.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0554-2
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/163
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
LiTFSA based hybrids LiPF6 based hybrids
Sample Weight loss/% Time/s Sample Weight loss/% Time/s
A (MDMB 0.5 mmol) 15.9 61 G (MDMB 0.5 mmol) 16.8 64
B (MDMB 1.0 mmol) 9.77 60 H (MDMB 1.0 mmol) 15.5 61
C (MDMB 1.5 mmol) 13.2 61 I (MDMB 1.5 mmol) 21.1 67
D (TMB 0.5 mmol) 11.5 60 J (TMB 0.5 mmol) 33.5 67
E (TMB 1.0 mmol) 10.3 70 K (TMB 1.0 mmol) 25.6 63
F (TMB 1.5 mmol) 16.9 62 L (TMB 1.5 mmol) 16.9 63
Tab.1  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Element Before flame test After flame test
F 2p 35.69
Si 2p 1.233 18.16
Si 2s 17.45
S 2p 4.614 3.531
B 1s 4.465
S 2s 4.13 1.533
C 1s 19.656 11.367
N 1s 3.717 2.472
O 1s 12.657 38.605
F 1s 13.801 6.851
Tab.2  
1 J MTarascon, M Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367
https://doi.org/10.1038/35104644 pmid: 11713543
2 KZaghib, P Charest, AGuerfi, JShim, M Perrier, KStriebel. Safe Li-ion polymer batteries for HEV applications. Journal of Power Sources, 2004, 134(1): 124–129
https://doi.org/10.1016/j.jpowsour.2004.02.020
3 MArmand, J M Tarascon. Building better batteries. Nature, 2008, 451(7179): 652–657
https://doi.org/10.1038/451652a pmid: 18256660
4 J BGoodenough, K SPark. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
https://doi.org/10.1021/ja3091438 pmid: 23294028
5 NLi, H Song, HCui, CWang. Sn@ graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy, 2014, 3: 102–112
https://doi.org/10.1016/j.nanoen.2013.10.014
6 NLi, S Jin, QLiao, HCui, C X Wang. Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy, 2014, 5: 105–115
https://doi.org/10.1016/j.nanoen.2014.02.011
7 NLi, H Song, HCui, GYang, C Wang. Self-assembled growth of Sn@ CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. Journal of Materials Chemistry A, 2014, 2(8): 2526–2537
https://doi.org/10.1039/c3ta14217e
8 NWilliard, W He, CHendricks, MPecht. Lessons learned from the 787 Dreamliner issue on the lithium-ion battery reliability. Energies, 2013, 6(9): 4682–4695
https://doi.org/10.3390/en6094682
9 QWang, P Ping, XZhao, GChu, J Sun, CChen. Thermal runaway caused by fire and explosion of lithium-ion battery. Journal of Power Sources, 2012, 208: 210–224
https://doi.org/10.1016/j.jpowsour.2012.02.038
10 S ESloop, J K Pugh, S Wang, J BKerr, KKinoshita. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochemical and Solid-State Letters, 2001, 4(4): A42–A44
https://doi.org/10.1149/1.1353158
11 RSpotnitz, J Franklin. Abuse behavior of high power, lithium-ion cells. Journal of Power Sources, 2003, 113(1): 81–100
https://doi.org/10.1016/S0378-7753(02)00488-3
12 R MSpotnitz, J Weaver, GYeduvaka, D HDoughty, E PRoth. Simulation of abuse tolerance of lithium-ion battery packs. Journal of Power Sources, 2007, 163(2): 1080–1086
https://doi.org/10.1016/j.jpowsour.2006.10.013
13 G HKim, A Pesaran, RSpotnitz. A three-dimensional thermal abuse model for lithium-ion cells. Journal of Power Sources, 2007, 170(2): 476–489
https://doi.org/10.1016/j.jpowsour.2007.04.018
14 S JHarris, A Timmons, W JPitz. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. Journal of Power Sources, 2009, 193(2): 855–858
https://doi.org/10.1016/j.jpowsour.2009.04.030
15 DLisbona, T Snee. A review of hazards associated with primary lithium and lithium-ion batteries. Process Safety and Environmental Protection, 2011, 89(6): 434–442
https://doi.org/10.1016/j.psep.2011.06.022
16 HOta, A Kominato, W JChun, EYasukawa, SKasuya. Effect of cyclic phosphate additive in non-flammable electrolyte. Journal of Power Sources, 2003, 119–121: 393–398
https://doi.org/10.1016/S0378-7753(03)00259-3
17 XWang, C Yamada, HNaito, GSegami, KKibe. High concentration trimethyl phosphate-based non-flammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells. Journal of the Electrochemical Society, 2006, 153(1): A135–A139
https://doi.org/10.1149/1.2136078
18 JWen, Y Yu, CChen. A review on lithium-ion batteries safety issues: existing problems and possible solutions. Materials Express, 2012, 2(3): 197–212
https://doi.org/10.1166/mex.2012.1075
19 AMartinelli. Effects of a protic ionic liquid on the reaction pathway during non-aqueous sol-gel synthesis of silica: a Raman spectroscopic investigation. International Journal of Molecular Sciences, 2014, 15(4): 6488–6503
https://doi.org/10.3390/ijms15046488 pmid: 24743891
20 NMatsumi, Y Toyota, PJoshi, PPuneet, RVedarajan, TTakekawa. Boric ester-type molten salt via dehydrocoupling reaction. International Journal of Molecular Sciences, 2014, 15(11): 21080–21089
https://doi.org/10.3390/ijms151121080 pmid: 25405738
21 K SSmaran, R Vedarajan, NMatsumi. Design of organic-inorganic hybrid ion-gel electrolytes composed of borosilicate and allylimidazolium type ionic liquids. International Journal of Hydrogen Energy, 2014, 39(6): 2936–2942
https://doi.org/10.1016/j.ijhydene.2013.05.124
22 SHess, M Wohlfahrt-Mehrens, MWachtler. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162(2): A3084–A3097
https://doi.org/10.1149/2.0121502jes
23 TMizumo, E Marwanta, NMatsumi, HOhno. Allylimidazolium halides as novel room temperature ionic liquids. Chemistry Letters, 2004, 33(10): 1360–1361
https://doi.org/10.1246/cl.2004.1360
24 K SSmaran, P Joshi, RVedarajan, NMatsumi. Optimisation of potential boundaries with dynamic electrochemical impedance spectroscopy for an anodic half-cell based on organic–inorganic hybrid electrolytes. ChemElectroChem, 2015, 2(12): 1913–1916
https://doi.org/10.1002/celc.201500372
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed