Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 99-106   https://doi.org/10.1007/s11708-018-0555-1
  本期目录
用于表征增强型地热系统热储的新奇流阻路模型
郭剑, 曹文炅, 王亦伟, 蒋方明()
中国科学院广州能源研究所先进能源系统研究室,中国科学院可再生能源重点实验室,广东省新能源和可再生能源研究开发与应用重点实验室,中国广州 510640
A novel flow-resistor network model for characterizing enhanced geothermal system heat reservoir
Jian GUO, Wenjiong CAO, Yiwei WANG, Fangming JIANG()
Laboratory of Advanced Energy Systems of CAS Key Laboratory of Renewable Energy, and Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
 全文: PDF(423 KB)   HTML
摘要:

地下热储层的裂隙结构特征研究对于增强型地热系统的开发具有重大意义。本文提出流阻网络理论模型,构建热储层的裂隙结构,研究其水力传输过程。通过单条裂隙和单个流阻的参数转换,实际热储层的复杂裂隙结构被合理简化为由众多流阻构成的规则流阻网络。该规则的流阻网络具有统一的简单架构,通过不同的网络节数和流阻阻值来表征不同的裂隙结构。本文研究了各种网络节数和流阻阻值的模型特征,计算结果表明,注入井和生产井之间的裂隙总数对热储层的总流阻起主要决定作用,并且这两者之间呈一定的线性关系。此外,本文基于总流阻和总裂隙数的线性关联式,推导了苏尔士热储层的总裂隙数。研究结果为苏尔士热储层的不同井间的地下裂隙结构表征提供参考。

Abstract

The fracture characteristics of a heat reservoir are of critical importance to enhanced geothermal systems, which can be investigated by theoretical modeling. This paper presents the development of a novel flow-resistor network model to describe the hydraulic processes in heat reservoirs. The fractures in the reservoir are simplified by using flow resistors and the typically complicated fracture network of the heat reservoir is converted into a flow-resistor network with a reasonably simple pattern. For heat reservoirs with various fracture configurations, the corresponding flow-resistor networks are identical in terms of framework though the networks may have different section numbers and the flow resistors may have different values. In this paper, numerous cases of different section numbers and resistor values are calculated and the results indicate that the total number of flow resistances between the injection and production wells is primarily determined by the number of fractures in the reservoir. It is also observed that a linear dependence of the total flow resistance on the number of fractures and the relation is obtained by the best fit of the calculation results. Besides, it performs a case study dealing with the Soultz enhanced geothermal system (EGS). In addition, the fracture numbers underneath specific well systems are derived. The results provide insight on the tortuosity of the flow path between different wells.

Key wordsenhanced geothermal systems    flow-resistor network model    fracture characteristics    heat reservoir
收稿日期: 2017-08-18      出版日期: 2019-03-20
通讯作者: 蒋方明     E-mail: fm_jiang2000@yahoo.com; fm_jiang2013@yahoo.com
Corresponding Author(s): Fangming JIANG   
 引用本文:   
郭剑, 曹文炅, 王亦伟, 蒋方明. 用于表征增强型地热系统热储的新奇流阻路模型[J]. Frontiers in Energy, 2019, 13(1): 99-106.
Jian GUO, Wenjiong CAO, Yiwei WANG, Fangming JIANG. A novel flow-resistor network model for characterizing enhanced geothermal system heat reservoir. Front. Energy, 2019, 13(1): 99-106.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0555-1
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/99
Fig.1  
Fig.2  
Fig.3  
Fig.4  
N a/mm; Fraction
0.5; 0.362 1; 0.231 2; 0.241 5; 0.154 8; 0.011
500 181 116 121 77 6
1000 362 231 241 154 11
1500 544 347 362 231 17
2000 725 462 483 308 22
2500 906 587 603 385 28
3000 1087 693 724 463 33
Tab.1  
N L/m; Fraction
10; 0.381 20; 0.236 30; 0.146 50; 0.146 80; 0.091
500 191 118 73 73 45
1000 381 236 146 146 91
1500 572 354 219 219 136
2000 762 472 292 292 181
2500 953 590 365 366 227
3000 1144 708 438 439 272
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
a Fracture aperture/mm
I Electric current/A
L Fracture length/m
M Section number of flow-resistor network model
N Fracture number
p Pressure/Pa
PI Productivity index/(kg·s1·MPa1)
Q Mass flow rate/(kg·s1)
R Electric or flow resistance/(W or Pa·kg1·s)
U Electric voltage/V
r Density of the fluid/(kg·m3)
m Viscosity of the fluid/(Pa·s)
  
1 An MIT-Led Interdisciplinary Panel (chaired by J.W. Tester). The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. 2006,
2 AGhassemi, S Tarasovs, H A D ACheng. 3-D study of the effects of thermomechanical loads on fracture slip in enhanced geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(8): 1132–1148
https://doi.org/10.1016/j.ijrmms.2007.07.016
3 SDe Simone, V Vilarrasa, JCarrera, AAlcolea, PMeier. Thermal coupling may control mechanical stability of geothermal reservoirs during cold water injection. Physics and Chemistry of the Earth Parts A/B/C, 2013, 64(64): 117–126
https://doi.org/10.1016/j.pce.2013.01.001
4 BValley, K F Evans. Stress state at Soultz-sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. In: Proceedings of 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, 2007
5 AGenter, N Cuenot, CDezayes, JSausse, BValley, JBaumgartner, DFritsch. How a better characterization of a deep crystalline reservoir can contribute to improve EGS performance at Soultz. In: 1st European Geothermal Review, Geothermal Energy for Electric Power Production, Germany, 2007
6 BValley, C Dezayes, AGenter. Multiscale fracturing in the Soultz-sous-Forêts basement from borehole image analyses. In: Proceedings EHDRA Scientific Conference, France, 2007
7 CDezayes, A Genter, BValley. Structure of the low permeable naturally fractured geothermal reservoir at Soultz. Comptes Rendus Geoscience, 2010, 342(7–8): 517–530
https://doi.org/10.1016/j.crte.2009.10.002
8 CDezayes, A Genter, BValley. Overview of the fracture network at different scales within the granite reservoir of the EGS Soultz site (Alsace, France). In: World Geothermal Congress, 2010, 96(8): 4928–4937
9 RBaria1, S Michelet, JBaumgaertner, BDyer, A Gerard, JNicholls, THettkamp, DTeza, N Soma, HAsanuma, JGarnish, TMegel. Microseismic monitoring of the world’s largest potential HDR reservoir. In: 29th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, 2004
10 NCuenot, C Dorbath, LDorbath. Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace, France): implications for the characterization of the geothermal reservoir properties. Pure and Applied Geophysics, 2008, 165(5): 797–828
https://doi.org/10.1007/s00024-008-0335-7
11 LDorbath, N Cuenot, AGenter, MFrogneux. Seismic response of the fractured and faulted granite of Soultz-sous- Forêts (France) to 5 km deep massive water injections. Geophysical Journal of the Royal Astronomical Society, 2009, 177(2): 653–675
https://doi.org/10.1111/j.1365-246X.2009.04030.x
12 B CDyer. Soultz GPK2 stimulation June/July 2000. Seismic Monitoring Field Report, 2000
13 BSanjuan, J Pinault, PRose, AGerard, MBrach, GBraibant, CCrouzet, JFoucher, AGautier, STouzelet. Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005. Geothermics, 2006, 35(5–6): 622–653
https://doi.org/10.1016/j.geothermics.2006.09.007
14 CVogt, C Kosack, GMarquart. Stochastic inversion of the tracer experiment of the enhanced geothermal system demonstration reservoir in Soultz-sous-Forêts—revealing pathways and estimating permeability distribution. Geothermics, 2012, 42(42): 1–12
https://doi.org/10.1016/j.geothermics.2011.11.001
15 GRadilla, J Sausse, BSanjuan, MFourar. Interpreting tracer tests in the enhanced geothermal system (EGS) of Soultz-sous-Forêts using the equivalent stratified medium approach. Geothermics, 2012, 44: 43–51
https://doi.org/10.1016/j.geothermics.2012.07.001
16 T WHicks, R J Pine, J Willis-Richards, SXu, A JJupe, N E VRodrigues. A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(5): 499–511
https://doi.org/10.1016/0148-9062(96)00002-2
17 DSwenson, R Duteau, TSprecker. Modelling flow in a jointed geothermal reservoir. In: World Geothermal Congress, 1995, 2553–2558
18 OKolditz, H J Diersch. Quasi-steady state strategy for numerical simulation of geothermal circulation in hot dry rock fractures. International Journal of Non-linear Mechanics, 1993, 28(4): 467–481
https://doi.org/10.1016/0020-7462(93)90020-L
19 DBruel, M C Cacas. Numerical Modeling Technique: Contribution to the Soultz HDR Project. New York: Gordon & Breach, 1992
20 G WLanyon, A S Batchelor. Modelling for the UK hot dry rock programme using the fracture network method: summary report. Geoscience Report, 1992, 59: 5–78
21 KWatanabe, H Takahashi. A model analysis of the long-term performance of hot dry rock geothermal energy extractions systems. In: Proceedings of the JSME-ASME International Conference on Power Engineering, Tokyo, Japan, 1993:453–458
22 OKolditz. Modelling flow and heat transfer in fractured rocks: dimensional effect of matrix heat diffusion. Geothermics, 1995, 24(3): 421–437
https://doi.org/10.1016/0375-6505(95)00018-L
23 DBruel. Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: application to the Rosemanowes hot dry rock reservoir. Geothermics, 1995, 24(3): 361–374
https://doi.org/10.1016/0375-6505(95)00014-H
24 OKolditz, C Clauser. Numerical simulation of flow and heat transfer in fractured crystalline rocks: application to the hot dry rock site in Rosemanowes (U.K.). Geothermics, 1998, 27(1): 1–23
https://doi.org/10.1016/S0375-6505(97)00021-7
25 A RShaik, S S Rahman, N Tran, TTran. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Applied Thermal Engineering, 2011, 31(10): 1600–1606
https://doi.org/10.1016/j.applthermaleng.2011.01.038
26 YYang, H Yeh. Modeling heat extraction from hot dry rock in a multi-well system. Applied Thermal Engineering, 2009, 29(8–9): 1676–1681
https://doi.org/10.1016/j.applthermaleng.2008.07.020
27 RGelet, B Loret, NKhalili. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity. Journal of Geophysical Research. Solid Earth, 2012, 117(B7): 205–228
28 EKalinina, S McKenna, THadgu, TLowry. Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model. Cochlear Implants International, 2012, 5(S1): 132–134
29 F MJiang, L Luo, J LChen. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. International Communications in Heat and Mass Transfer, 2012, 41(1): 57–62
30 F MJiang, J L Chen, W B Huang, L Luo. A three-dimensional transient model for EGS subsurface thermo-hydraulic process. Energy, 2014, 72(7): 300–310
https://doi.org/10.1016/j.energy.2014.05.038
31 W JCao, W B Huang, F M Jiang. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction. International Journal of Heat and Mass Transfer, 2016, 92: 1205–1217
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.081
32 T CClayton, F E Donald, A R John. Engineering Fluid Mechanics. New York: McGraw-Hill Inc, 2001
33 AGenter, H Traineau. Analysis of macroscopic fractures in granite in the HDR geothermal well ESP-1, Soultz-sous-Forêts, France. Journal of Volcanology and Geothermal Research, 1996, 72(1–2): 121–141
https://doi.org/10.1016/0377-0273(95)00070-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed