Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 16-26   https://doi.org/10.1007/s11708-018-0572-0
  本期目录
用于冶金制造的中间包感应加热电源的恒温控制
岳雨霏, 徐千鸣(), 郭鹏, 罗安
湖南大学国家电能变换与控制工程技术研究中心,中国长沙 410082
Constant temperature control of tundish induction heating power supply for metallurgical manufacturing
Yufei YUE, Qianming XU(), Peng GUO, An LUO
National Electric Power Conversion and Control Engineering Technology Research Center, Hunan University, Changsha 410082, China
 全文: PDF(2698 KB)   HTML
摘要:

在冶金连铸生产过程中,中间包感应加热电源是重要装备之一,其恒温控制效果对冶金生产过程尤为重要。本文分析了感应加热电源的负载温度和电源输出功率之间的关系,将恒温控制由功率控制实现。提出了前级三相PWM整流器和后级全桥级联逆变器的中间包电磁感应加热电源拓扑。为达到恒温控制的目的,提出了功率外环和电流内环的双闭环控制方法。为了保证控制系统的稳定性,对控制器参数进行了合理设计。通过实验验证了所提出感应加热电源拓扑及其控制方法的可行性和有效性。

Abstract

The tundish induction heating power supply (TIHPS) is one of the most important equipment in the continuous casting process for metallurgical manufacturing. Specially, the constant temperature control is greatly significant for metallurgical manufacturing. In terms of the relationship between TIH load temperature and output power of TIHPS, the constant temperature control can be realized by power control. In this paper, a TIHPS structure with three-phase PWM rectifiers and full-bridge cascaded inverter is proposed. Besides, an input harmonic current blocking strategy and a load voltage feedforward control are also proposed to realize constant temperature control. To meet the requirement of the system, controller parameters are designed properly. Experiments are conducted to validate the feasibility and effectiveness of the proposed TIHPS topology and the control methods.

Key wordstundish induction heating power supply (TIHPS)    constant temperature control    input harmonic current blocking    load voltage feedforward
收稿日期: 2017-11-23      出版日期: 2019-03-20
通讯作者: 徐千鸣     E-mail: xqm@hnu.edu.cn
Corresponding Author(s): Qianming XU   
 引用本文:   
岳雨霏, 徐千鸣, 郭鹏, 罗安. 用于冶金制造的中间包感应加热电源的恒温控制[J]. Frontiers in Energy, 2019, 13(1): 16-26.
Yufei YUE, Qianming XU, Peng GUO, An LUO. Constant temperature control of tundish induction heating power supply for metallurgical manufacturing. Front. Energy, 2019, 13(1): 16-26.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0572-0
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/16
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Parameters Value
Line-to-line voltage Usx(rms)/V 380
Grid frequency f/Hz 50
Cascaded FB-SM number N 6
Reference voltage of SM Udc ref/V 800
Load current frequency fo/Hz
Load temperature reference T*/C
200
1000
Tab.1  
Fig.9  
Fig.10  
Fig.11  
1 OLucía, P Maussion, E JDede, J MBurdío. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2509–2520
https://doi.org/10.1109/TIE.2013.2281162
2 W CMoreland. The induction range: its performance and its development problems. IEEE Transactions on Industry Applications, 1973, 9(1): 81–85
https://doi.org/10.1109/TIA.1973.349892
3 JDavies, P Simpson. Induction Heating Handbook. New York: McGraw-Hill, 1979
4 L YZu, H J Meng, X Zhi. Coupled numerical simulation of fluid field and temperature field in five-strand tundish of continuous casting. In: Proceeding of International Conference Electric Information and Control Engineering, Wuhan, China, 2011, 251–255
5 RRistiana, A Syaichu-Rohman, P HRusmin. Modeling and control of temperature dynamics in induction furnace system. In: Proceeding of 5th IEEE International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 2015
6 RRistiana, A S Rochman. Modelling and desain temperature control of induction furnaces system. Dissertation for the Master’s Degree. Indonesia: Institut Teknologi Bandung, 2013
7 QHe, Z Su, ZXie, ZZhong, QYao. A novel principle for molten steel level measurement in tundish by using temperature gradient. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1809–1819
https://doi.org/10.1109/TIM.2017.2668598
8 PViriya, S Sittichok, KMatsuse. Analysis of high-frequency induction cooker with variable frequency power control. PCC-Osaka, 2002, 3: 1502–1507
9 YLiu, B Ge, HAbu-Rub, HSun, F Peng, YXue. Model predictive direct power control for active power decoupled single-phase quasi-Z-source inverter. IEEE Transactions on Industrial Informatics, 2016, 12(4): 1550–1559
https://doi.org/10.1109/TII.2016.2580001
10 YZhang, C Qu, JGao. Performance improvement of direct power control of PWM rectifier under unbalanced network. IEEE Transactions on Power Electronics, 2017, 32(3): 2319–2328
https://doi.org/10.1109/TPEL.2016.2562262
11 CXiang, Z Liu, GZhang, YLiao. A model-based predictive direct power control for traction line-side converter in high-speed railway. In: 2016 IEEE Conference and Expo of Transportation Electrification Asia-pacific, Busan, South Korea, 2016, 134–138
https://doi.org/10.1109/ITEC-AP.2016.7512936
12 JHu, J Zhu, D GDorrell. Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement. IEEE Transactions on Sustainable Energy, 2015, 6(3): 943–950
https://doi.org/10.1109/TSTE.2014.2341244
13 TIsobe, R Shimada. New power supply topologies enabling high performance induction heating by using MERS. In: 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013, 5046–5051
14 BSaha, R Y Kim. High power density series resonant inverter using an auxiliary switched capacitor cell for induction heating applications. IEEE Transactions on Power Electronics, 2014, 29(4): 1909–1918
https://doi.org/10.1109/TPEL.2013.2265984
15 TMishima, M Nakaoka. A load-power adaptive dual pulse modulated current phasor-controlled ZVS high-frequency resonant inverter for induction heating applications. IEEE Transactions on Power Electronics, 2014, 29(8): 3864–3880
https://doi.org/10.1109/TPEL.2013.2288985
16 J IRodriguez, S BLeeb. A multilevel inverter topology for inductively coupled power transfer. IEEE Transactions on Power Electronics, 2006, 21(6): 1607–1617
https://doi.org/10.1109/TPEL.2006.882965
17 AAlthobaiti, M Armstrong, M AElgendy. Current control of three-phase grid-connected PV inverters using adaptive PR controller. In: 2016 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 2016
https://doi.org/10.1109/IREC.2016.7507628
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed