Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 193-203   https://doi.org/10.1007/s11708-019-0608-0
  本期目录
用于多效蒸发海水淡化系统的太阳能吸收器模拟研究
赵兆瑞1(), 杨宝3, 邢子文2
1. Department of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; Center for Environmental Energy Engineering (CEEE), Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
2. 西安交通大学能源与动力工程系,中国西安 710049
3. 马里兰大学帕克分校机械工程系环境能源工程中心(CEEE),美国马里兰州 20742
Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system
Zhaorui ZHAO1(), Bao YANG3, Ziwen XING2
1. Department of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; Center for Environmental Energy Engineering (CEEE), Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
2. Department of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. Center for Environmental Energy Engineering (CEEE), Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
 全文: PDF(1891 KB)   HTML
摘要:

近年来,多空双层木质太阳能吸收器因其在太阳能淡化系统中的潜力而被广泛研究。本文建立了一套数学模型分析此种多孔太阳能吸收器的热力学性能,并进而分析了其应用在多效蒸发海水淡化系统中的运行性能和运行参数。针对系统中的运行参数,包括驱动蒸汽温度、海水流量、太阳能吸热量及系统效数等,其对单位产水量的影响进行了整体的分析。结果表明,在蒸汽驱动温度为145℃的运行状况下,MED系统的整体运行效果最佳,单位能耗为24.88kWh/t。太阳能吸热功率大幅影响了多效系统的级间温差。在50kW至230kW范围内,平均温差有1.88℃升高至6.27℃。模拟结果对此种多孔双层太阳能吸收器的设计优化与其在MED系统中的性能改进有极大地指导意义。

Abstract

Recently the porous bilayer wood solar collectors have drawn increasing attention because of their potential application in solar desalination. In this paper, a thermodynamic model has been developed to analyze the performance of the wood solar collector. A modeling analysis has also been conducted to assess the performance and operating conditions of the multiple effect desalination (MED) system integrated with the porous wood solar collector. Specifically, the effects of operating parameters, such as the motive steam temperature, seawater flow rate, input solar energy and number of effects on the energy consumption for each ton of distilled water produced have been investigated in the MED desalination system combined with the bilayer wood solar steam generator. It is found that, under a given operating condition, there exists an optimum steam generation temperature of around 145°C in the wood solar collector, so that the specific power consumption in the MED system reaches a minimum value of 24.88 kWh/t. The average temperature difference is significantly affected by the solar heating capacity. With the solar capacity increasing from 50 kW to 230 kW, the average temperature difference increases from 1.88°C to 6.27°C. This parametric simulation study will help the design of efficient bilayer wood solar steam generator as well as the MED desalination system.

Key wordssolar energy    steam generating    multi-effect desalination
收稿日期: 2018-07-18      出版日期: 2019-03-20
通讯作者: 赵兆瑞     E-mail: smile90613@163.com
Corresponding Author(s): Zhaorui ZHAO   
 引用本文:   
赵兆瑞, 杨宝, 邢子文. 用于多效蒸发海水淡化系统的太阳能吸收器模拟研究[J]. Frontiers in Energy, 2019, 13(1): 193-203.
Zhaorui ZHAO, Bao YANG, Ziwen XING. Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system. Front. Energy, 2019, 13(1): 193-203.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0608-0
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/193
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Parameters Value
Inlet seawater salinity/% 4.2
Inlet seawater temperature/°C 25
Outlet brine temperature/°C 35
Number of tube 20 (4 × 5)
Energy efficiency of preheater 0.9
Inner diameter of tubes/mm 20
Outer diameter of tubes/mm 30
Length of tubes/m 1
Area of preheater/m2 2
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
A Area /m2
BPE The rise in brine’s boiling point rise/K
d Diameter/m
F Mass flow rate/ (kg·s1)
h Specific enthalpy /(kJ·kg1)
m Refrigerant mass /kg
N Number
P Pressure/kPa
Q Heat/kJ
R Fouling resistance of pipe wall/(m2·K1·W1)
r Latent heat/(kJ·kg1)
T Temperature/K
W Power consumption/kJ
X Salinity
α Heat transfer coefficient/(W·m2·K1)
λ Heat transfer coefficient/(W·m2·K1)
μ Dynamic viscosity/(Pa·s)
ρ Density/(kg·m3)
dis Discharge
ev Entrained vapor
f Fluid
l Liquid
sat Saturation
sw Seawater
suc Suction
v Vapor
w Wall
  
1 A DKhawaji, I K Kutubkhanah, J M Wie. Advances in seawater desalination technologies. Desalination, 2008, 221(1–3): 47–69
https://doi.org/10.1016/j.desal.2007.01.067
2 NGhaffour, T M Missimer, G L Amy. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination, 2013, 309: 197–207
https://doi.org/10.1016/j.desal.2012.10.015
3 MElimelech, W A Phillip. The future of seawater desalination: energy, technology, and the environment. Science, 2011, 333(6043): 712–717
https://doi.org/10.1126/science.1200488
4 ACipollina, G Micale, LRizzuti. Seawater Desalination: Conventional and Renewable Energy Processes. Berlin: Springer, 2009
5 AAl-Karaghouli, L L Kazmerski. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable & Sustainable Energy Reviews, 2013, 24: 343–356
https://doi.org/10.1016/j.rser.2012.12.064
6 MAl-Nory, M El-Beltagy. An energy management approach for renewable energy integration with power generation and water desalination. Renewable Energy, 2014, 72: 377–385
https://doi.org/10.1016/j.renene.2014.07.032
7 N A SElminshawy, F RSiddiqui, G ISultan. Development of a desalination system driven by solar energy and low grade waste heat. Energy Conversion and Management, 2015, 103: 28–35
https://doi.org/10.1016/j.enconman.2015.06.035
8 K VReddy, N Ghaffour. Overview of the cost of desalinated water and costing methodologies. Desalination, 2007, 205(1–3): 340–353
https://doi.org/10.1016/j.desal.2006.03.558
9 M ADarwish, F Al-Juwayhel, H KAbdulraheim. Multi-effect boiling systems from an energy viewpoint. Desalination, 2006, 194(1–3): 22–39
https://doi.org/10.1016/j.desal.2005.08.029
10 F MZhang, S M Xu, D D Feng, S Q Chen, R X Du, C J Su, B Y Shen. A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine. Desalination, 2017, 404: 112–120
https://doi.org/10.1016/j.desal.2016.11.006
11 YZhang, M Sivakumar, S QYang, KEnever, MRamezanianpour. Application of solar energy in water treatment processes: a review. Desalination, 2018, 428: 116–145
https://doi.org/10.1016/j.desal.2017.11.020
12 JSun, Q B Liu, H Hong. Numerical study of parabolic-trough direct steam generation loop in recirculation mode: characteristics, performance and general operation strategy. Energy Conversion and Management, 2015, 96: 287–302
https://doi.org/10.1016/j.enconman.2015.02.080
13 LLi, J Sun, Y SLi. Thermal load and bending analysis of heat collection element of direct-steam-generation parabolic-trough solar power plant. Applied Thermal Engineering, 2017, 127: 1530–1542
https://doi.org/10.1016/j.applthermaleng.2017.08.129
14 K MBataineh. Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination, 2016, 385: 39–52
https://doi.org/10.1016/j.desal.2016.02.011
15 M ASharaf, A S Nafey, L García-Rodríguez. Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes. Energy, 2011, 36(5): 2753–2764
https://doi.org/10.1016/j.energy.2011.02.015
16 A MEl-Nashar. The economic feasibility of small MED seawater desalination plants for remote arid areas. Desalination, 2001, 134(1): 173–186
17 I SAl-Mutaz, I Wazeer. Current status and future directions of MED-TVC desalination technology. Desalination and Water Treatment, 2014, 55(1):1–9
18 DZhao, J Xue, SLi, HSun, Q D Zhang. Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high salinity waste water. Desalination, 2011, 273(2–3): 292–298
19 ScienceDaily. Solar-powered devices made of wood could help mitigate water scarcity crisis. 2017–10–17,
20 The Chemical Engineer. Wood improves solar steam generation. 2017–11–16,
21 MZhu, Y Li, GChen, FJiang, ZYang, X Luo, YWang, S DLacey, JDai, C Wang, CJia, JWan, Y Yao, AGong, BYang, Z Yu, SDas, LHu. Tree-inspired design for high-efficiency water extraction. Advanced Materials, 2017, 29(44): 1704107
https://doi.org/10.1002/adma.201704107
22 CChen, Y Li, JSong, ZYang, Y Kuang, EHitz, CJia, A Gong, FJiang, J YZhu, BYang, J Xie, LHu. Highly flexible and efficient solar steam generation device. Advanced Materials, 2017, 29(30): 1701756
https://doi.org/10.1002/adma.201701756
23 GPeng, H Ding, S WSharshir, XLi, H Liu, DMa, LWu, J Zang, HLiu, WYu, H Xie, NYang. Low-cost high-efficiency solar steam generator by combining thin film evaporation and heat localization: both experimental and theoretical study. Applied Thermal Engineering, 2018, 143: 1079–1084
https://doi.org/10.1016/j.applthermaleng.2018.08.004
24 HDing, G Peng, SMo, DMa, S W Sharshir, N Yang. Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study. Nanoscale, 2017, 9(48): 19066–19072
https://doi.org/10.1039/C7NR05304E
25 J SChiou, S Yang, C KChen. Laminar film condensation inside a horizontal elliptical tube. Applied Mathematical Modelling, 1994, 18(6): 340–346
https://doi.org/10.1016/0307-904X(94)90358-1
26 S WChurchill, MBernstein. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. Journal of Heat Transfer, 1977, 99(2): 300–306
https://doi.org/10.1115/1.3450685
27 H TEl-Dessouky, H M Ettouney. Fundamentals of Salt Water Desalination. Elsevier Science, 2002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed