Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 172-184   https://doi.org/10.1007/s11708-019-0610-6
  本期目录
热管主要应用及其与吸附式系统耦合的研究进展
于洋, 安国亮, 王丽伟()
上海交通大学制冷与低温工程研究所,中国上海 200240
Major applications of heat pipe and its advances coupled with sorption system: a review
Yang YU, Guoliang AN, Liwei WANG()
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1035 KB)   HTML
摘要:

热管利用连续的相变过程,以较小的温差实现较高的热传导。几十年来,热管与新兴技术(例如采用纳米流体和自湿润流体)的结合取得了极大的发展。除了热控和余热回收等典型应用,热管技术与吸附式技术的耦合可有效提高吸附式系统(可用于制热,冷却和冷热联供等)的热质传递性能。然而,现有关于这种整合的研究中,关注吸附原理本身用于连续传热的很少。本文呈现了热管的新兴工质流体,主要应用实例以及热管型吸附式系统的研究进展,在此基础上进一步介绍了化学吸附热管这一新型传热元件的研究成果,以期为后续的探索提供一些有益的指导。

Abstract

Heat pipe utilizes continuous phase change process within a small temperature drop to achieve high thermal conductivity. For decades, heat pipes coupled with novel emerging technologies and methods (using nanofluids and self-rewetting fluids) have been highly appreciated, along with which a number of advances have taken place. In addition to some typical applications of thermal control and heat recovery, the heat pipe technology combined with the sorption technology could efficiently improve the heat and mass transfer performance of sorption systems for heating, cooling and cogeneration. However, almost all existing studies on this combination or integration have not concentrated on the principle of the sorption technology with acting as the heat pipe technology for continuous heat transfer. This paper presents an overview of the emerging working fluids, the major applications of heat pipe, and the advances in heat pipe type sorption system. Besides, the ongoing and perspectives of the solid sorption heat pipe are presented, expecting to serve as useful guides for further investigations and new research potentials.

Key wordsheat pipe    sorption system    heat transfer    solid sorption heat pipe
收稿日期: 2018-05-25      出版日期: 2019-03-20
通讯作者: 王丽伟     E-mail: lwwang@sjtu.edu.cn
Corresponding Author(s): Liwei WANG   
 引用本文:   
于洋, 安国亮, 王丽伟. 热管主要应用及其与吸附式系统耦合的研究进展[J]. Frontiers in Energy, 2019, 13(1): 172-184.
Yang YU, Guoliang AN, Liwei WANG. Major applications of heat pipe and its advances coupled with sorption system: a review. Front. Energy, 2019, 13(1): 172-184.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0610-6
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/172
Ref. Types of nanoparticles Concentration Base fluid Types of heat pipes
[25] Al2O3 1% to 5% Water/EG Cylindrical-screen mesh
[26] Al2O3 1%, 3%, 5% Water LHP-biomaterial wick (Collaria)
[2729] Al2O3 2.5%, 5%, 7.5% Water Cylindrical-wick
[30] Al2O3 and CuO 0.1% Water cylindrical-screen mesh
[31] Al2O3 2% Water two-phase closed thermosyphon
[32] Al2O3 1.3% Water Cylindrical-screen mesh
[33] Al2O3 1% to 4% Water Cylindrical-wick
[34] Al2O3 1% Water Cylindrical-wick
[3537] CuO 1.0% Water Cylindrical-screen mesh
[38] CuO, Al2O3 2%, 4%, 6%, 8% Water Flat-shaped and disk-shaped
[39] CuO, Al2O3 2%, 4%, 8%, 10%, 20% Water Cylindrical-packed sphere wick
[40] Cu 0.5wt% Water Cylindrical-stainless steel mesh wick
[41] Cu 100 mg/L Water Cylindrical-stainless steel wrapped screen
[42] Cu 10 ppm, 30 ppm, 50 ppm Water Loop thermosyphon
[43] Cu 5% Water Open loop PHP
[44] Cu 0.5wt% Water Closed loop PHP
[45] Cu 0.1wt% Water Cylindrical-copper wire screen wick
[46] Cu 1.0wt%, 1.5wt%, 2.0wt% Water mLHP
Tab.1  
Ref. Types of self-rewetting fluids Types of heat pipes Effect/Remarks
[49] Butanol/pentanol/hexanol/water LHP with PTFE wick A 160% increase of critical heat load and lowest thermal resistance with 6wt% butanol aqueous solution
[50] n-butanol, n-pentanol, n-hexanol and n-heptanol Cylindrical-wrapped screen wick Higher thermal efficiency and lower thermal resistance, increased capillary limit and boiling limit
[51] Water/butanol 4wt% and water/butanol 7wt% Cylindrical-screen mesh wick Vapor departing and liquid arrival mechanism caused the heat transfer enhancement and 25% improvement was obtained when 7wt% butanol solution
[52] 1-Butanol aqueous solution with 5% mass fraction Gravity HP At small inclination angle, self-rewetting fluid significantly increases the
dry-out limit
[53] Graphene oxide dispersion solution and n-butanol alcohol aqueous solution OHP The optimum constituent concentration of 0.07wt% graphene oxide and 0.7wt% n-butanol
[54] Butyl alcohol solution with 5% mass fraction Cross internal helical microfin gravity HP Significantly increase the drying limit in the horizontal position
[55] SRWF OHP Good thermal performance under large heat load when the FR is 40% and effective thermal conductivity reaches 5676 W m1°C1
Tab.2  
Years Applications
1970s Aerospace and astronautics
1980s Energy conservation
1990s Industrial and energy utilization
2000s Computers and electronics cooling
2010s Global warming and environment
Tab.3  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 R SGaugler. Heat transfer device. US Patent, 2350348, 1944
2 G MGrover, T P Cotter, G F Ericson. Structures of very high thermal conductance. Journal of Applied Physics, 1964, 35: 1190–1191
3 D AReay, P A Kew, R J McGlen. Heat Pipes: Theory, Design and Applications. 6th ed. Whitley Bay: Elsevier, 2013
4 L LVasiliev, S Kakac. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications. Florida: Taylor & Francis Group, 2013
5 AFaghri. Heat pipes: review, opportunities and challenges. Frontiers in Heat Pipes, 2014, 5(1): 1–48
https://doi.org/10.5098/fhp.5.1
6 AFaghri, M M Chen, M Morgan. Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons. Journal of Heat Transfer, 1989, 111(3): 611–618
https://doi.org/10.1115/1.3250726
7 M SEl-Genk, H H Saber. Flooding limit in closed, two-phase flow thermosyphons. International Journal of Heat and Mass Transfer, 1997, 40(9): 2147–2164
https://doi.org/10.1016/S0017-9310(96)00269-4
8 HNguyen-Chi, M Groll. Entrainment or flooding limit in a closed two-phase thermosyphon. Journal of Heat Recovery Systems, 1981, 1(4): 275–286
https://doi.org/10.1016/0198-7593(81)90038-2
9 D PShatto, J A Besly, G P Peterson. Visualization study of flooding and entrainment in a closed two-phase thermosyphon. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 579–581
https://doi.org/10.2514/2.6282
10 FMeunier. Solid sorption heat powered cycles for cooling and heat pumping applications. Applied Thermal Engineering, 1998, 18(9–10): 715–729
https://doi.org/10.1016/S1359-4311(97)00122-1
11 L WWang, R Z Wang, R G Oliveira. A review on adsorption working pairs for refrigeration. Renewable & Sustainable Energy Reviews, 2009, 13(3): 518–534
https://doi.org/10.1016/j.rser.2007.12.002
12 TYan, R Z Wang, T X Li, L W Wang, I T Fred. A review of promising candidate reactions for chemical heat storage. Renewable & Sustainable Energy Reviews, 2015, 43: 13–31
https://doi.org/10.1016/j.rser.2014.11.015
13 R ZWang, L W Wang, J Y Wu. Adsorption Refrigeration Theory and Applications. Beijing: Science Press, 2007
14 R ECritoph. The use of thermosyphon heat pipes to improve the performance of a carbon-ammonia adsorption refrigerator. In: IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, 2000
15 R ZWang. Efficient adsorption refrigerators integrated with heat pipes. Applied Thermal Engineering, 2008, 28(4): 317–326
https://doi.org/10.1016/j.applthermaleng.2006.02.028
16 D CWang, Z Z Xia, J Y Wu, R Z Wang, H Zhai, W DDou. Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction. International Journal of Refrigeration, 2005, 28(7): 1073–1083
https://doi.org/10.1016/j.ijrefrig.2005.03.001
17 G ZYang, Z Z Xia, R Z Wang, D Keletigui, D CWang, Z HDong, XYang. Research on a compact adsorption room air conditioner. Energy Conversion and Management, 2006, 47(15–16): 2167–2177
https://doi.org/10.1016/j.enconman.2005.12.005
18 L WWang, R Z Wang, Z S Lu, Y X Xu, J Y Wu. Split heat pipe type compound adsorption ice making test unit for fishing boats. International Journal of Refrigeration, 2006, 29(3): 456–468
https://doi.org/10.1016/j.ijrefrig.2005.08.007
19 T XLi, R Z Wang, L W Wang, Z S Lu, C J Chen. Performance study of a high efficient multifunction heat pipe type adsorption ice making system with novel mass and heat recovery processes. International Journal of Thermal Sciences, 2007, 46(12): 1267–1274
https://doi.org/10.1016/j.ijthermalsci.2006.12.003
20 YYu, L W Wang, L Jiang, PGao, R ZWang. The feasibility of solid sorption heat pipe for heat transfer. Energy Conversion and Management, 2017, 138: 148–155
https://doi.org/10.1016/j.enconman.2017.01.052
21 YYu, L W Wang, G L An. Experimental study on sorption and heat transfer performance of NaBr-NH3 for solid sorption heat pipe. International Journal of Heat and Mass Transfer, 2018, 117: 125–131
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.129
22 HJouhara, A Chauhan, TNannou, SAlmahmoud, BDelpech, L CWrobel. Heat pipe based systems—advances and applications. Energy, 2017, 128: 729–754
https://doi.org/10.1016/j.energy.2017.04.028
23 N KGupta, A K Tiwari, S K Ghosh. Heat transfer mechanisms in heat pipes using nanofluids—a review. Experimental Thermal and Fluid Science, 2018, 90: 84–100
https://doi.org/10.1016/j.expthermflusci.2017.08.013
24 H TChien, C I Tsai, P H Chen, P Y Chen. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid. In: Proceedings of 5th International Conference on Electronic Packaging Technology, Shanghai, China, 2003
25 NPutra, W N Septiadi, H Rahman, RIrwansyah. Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science, 2012, 40: 10–17
https://doi.org/10.1016/j.expthermflusci.2012.01.007
26 NPutra, R Saleh, W NSeptiadi, AOkta, Z Hamid. Thermal performance of biomaterial wick loop heat pipes with water-base Al2O3 nanofluids. International Journal of Thermal Sciences, 2014, 76: 128–136
https://doi.org/10.1016/j.ijthermalsci.2013.08.020
27 P RMashaei, M Shahryari, HFazeli, S MHosseinalipour. Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: a smart fluid for high efficiency thermal system. Applied Thermal Engineering, 2016, 100: 1016–1030
https://doi.org/10.1016/j.applthermaleng.2016.02.111
28 P RMashaei, M Shahryari, SMadani. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. Journal of Thermal Analysis and Calorimetry, 2016, 126(2): 891–904
https://doi.org/10.1007/s10973-016-5550-3
29 P RMashaei, M Shahryari, SMadani. Analytical study of multiple evaporator heat pipe with nanofluid: a smart material for satellite equipment cooling application. Aerospace Science and Technology, 2016, 59: 112–121
https://doi.org/10.1016/j.ast.2016.10.018
30 RRamachandran, K Ganesan, M RRajkumar, L GAsirvatham, SWongwises. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. International Communications in Heat and Mass Transfer, 2016, 76: 294–300
https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030
31 ASözen, T Menlik, MGürü, KBoran, FKılıç, MAktaş, M TÇakır. A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermosyphon heat pipes. Applied Thermal Engineering, 2016, 96: 330–337
https://doi.org/10.1016/j.applthermaleng.2015.11.038
32 MGhanbarpour, R Khodabandeh, KVafai. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid. Heat and Mass Transfer, 2017, 53(3): 973–983
https://doi.org/10.1007/s00231-016-1871-9
33 L MPoplaski, S P Benn, A Faghri. Thermal performance of heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 2017, 107: 358–371
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.111
34 RSenthil, D Ratchagaraja, RSilambarasan, RManikandan. Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe. Alexandria Engineering Journal, 2016, 55(2): 1063–1068
https://doi.org/10.1016/j.aej.2016.03.011
35 GKumaresan, S Venkatachalapathy, L GAsirvatham, SWongwises. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 2014, 57: 208–215
https://doi.org/10.1016/j.icheatmasstransfer.2014.08.001
36 SVenkatachalapathy, GKumaresan, SSuresh. Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. International Journal of Multiphase Flow, 2015, 72: 188–197
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.006
37 GKumaresan, S Venkatachalapathy, L GAsirvatham. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. International Journal of Heat and Mass Transfer, 2014, 72: 507–516
https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.029
38 KAlizad, K Vafai, MShafahi. Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 2012, 55(1–3): 140–155
https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.050
39 TBrahim, A Jemni. Numerical case study of packed sphere wicked heat pipe using Al2O3 and CuO based water nanofluid. Case Studies in Thermal Engineering, 2016, 8: 311–321
https://doi.org/10.1016/j.csite.2016.09.002
40 MKole, T K Dey. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Applied Thermal Engineering, 2013, 50(1): 763–770
https://doi.org/10.1016/j.applthermaleng.2012.06.049
41 RSenthilkumar, S Vaidyanathan, BSivaraman. Effect of inclination angle in heat pipe performance using copper nanofluid. Procedia Engineering, 2012, 38: 3715–3721
https://doi.org/10.1016/j.proeng.2012.06.427
42 JKlinbun, P Terdtoon. Experimental study of copper nano-fluid on thermosyphons thermal performance. Engineering Journal (New York), 2017, 21(1): 255–264
https://doi.org/10.4186/ej.2017.21.1.255
43 R RRiehl, N Santos. Water-copper nanofluid application in an open loop pulsating heat pipe. Applied Thermal Engineering, 2012, 42: 6–10
https://doi.org/10.1016/j.applthermaleng.2011.01.017
44 V KKarthikeyan, KRamachandran, B CPillai, ABrusly Solomon. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Experimental Thermal and Fluid Science, 2014, 54: 171–178
https://doi.org/10.1016/j.expthermflusci.2014.02.007
45 A BSolomon, K Ramachandran, L GAsirvatham, B CPillai. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. International Journal of Heat and Mass Transfer, 2014, 75: 523–533
https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.007
46 ZWan, J Deng, BLi, YXu, X Wang, YTang. Thermal performance of a miniature loop heat pipe using water-copper nanofluid. Applied Thermal Engineering, 2015, 78: 712–719
https://doi.org/10.1016/j.applthermaleng.2014.11.010
47 YAbe, A Iwasaki, KTanaka. Microgravity experiments on phase change of self-rewetting fluids. Annals of the New York Academy of Sciences, 2004, 1027(1): 269–285
https://doi.org/10.1196/annals.1324.022
48 YHu, K Huang, JHuang. A review of boiling heat transfer and heat pipes behaviour with self-rewetting fluids. International Journal of Heat and Mass Transfer, 2018, 121: 107–118
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.158
49 S CWu. Study of self-rewetting fluid applied to loop heat pipe. International Journal of Thermal Sciences, 2015, 98: 374–380
https://doi.org/10.1016/j.ijthermalsci.2015.07.024
50 RSenthilkumar, S Vaidyanathan, BSivaraman. Comparative study on heat pipe performance using aqueous solutions of alcohols. Heat and Mass Transfer, 2012, 48(12): 2033–2040
https://doi.org/10.1007/s00231-012-1046-2
51 S MPeyghambarzadeh, HHallaji, M RBohloul, NAslanzadeh. Heat transfer and Marangoni flow in a circular heat pipe using self-rewetting fluids. Experimental Heat Transfer, 2017, 30(3): 218–234
https://doi.org/10.1080/08916152.2016.1233148
52 G MXin, Q Y Qin, L S Zhang, W X Ji . Thermal characteristics of gravity heat pipes with self-rewetting fluid at small inclination angles. Journal of Engineering Thermophysics, 2013, 36(6): 1282–1285
53 X JSu, M Zhang, WHan, XGuo. Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. International Journal of Heat and Mass Transfer, 2016, 100: 378–385
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.094
54 F ZTian, G M Xin, Q Hai, LCheng. An investigation of heat transfer characteristic of cross internal helical microfin gravity heat pipe with self-rewetting fluid. Advanced Materials Research, 2013, 765– 767: 189–192
https://doi.org/10.4028/www.scientific.net/AMR.765-767.189
55 JZhao, J Qu, ZRao. Experiment investigation on thermal performance of a large-scale oscillating heat pipe with self-rewetting fluid used for thermal energy storage. International Journal of Heat and Mass Transfer, 2017, 108: 760–769
https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.093
56 S MSohel Murshed, C ANieto De Castro. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable & Sustainable Energy Reviews, 2017, 78: 821–833
https://doi.org/10.1016/j.rser.2017.04.112
57 AFaghri. Review and advances in heat pipe science and technology. Journal of Heat Transfer, 2012, 134(12): 123001
https://doi.org/10.1115/1.4007407
58 XChen, H Ye, XFan, TRen, G Zhang. A review of small heat pipes for electronics. Applied Thermal Engineering, 2016, 96: 1–17
https://doi.org/10.1016/j.applthermaleng.2015.11.048
59 Y FMaydanik, M A Chernysheva, V G Pastukhov. Review: loop heat pipes with flat evaporators. Applied Thermal Engineering, 2014, 67(1–2): 294–307
https://doi.org/10.1016/j.applthermaleng.2014.03.041
60 BSiedel, V Sartre, FLefèvre. Literature review: steady-state modelling of loop heat pipes. Applied Thermal Engineering, 2015, 75: 709–723
https://doi.org/10.1016/j.applthermaleng.2014.10.030
61 SBecker, S Vershinin, VSartre, ELaurien, JBonjour, Y FMaydanik. Steady state operation of a copper-water LHP with a flat-oval evaporator. Applied Thermal Engineering, 2011, 31(5): 686–695
https://doi.org/10.1016/j.applthermaleng.2010.02.005
62 Y FMaydanik, S Vershinin. Development and investigation of copper-water loop heat pipes with high operating characteristics. Heat Pipe Science and Technology, An International Journal, 2010, 1(2): 151–162
https://doi.org/10.1615/HeatPipeSciTech.v1.i2.30
63 V GPastukhov, Y FMaydanik. Low-niose cooling system for PC on the base of loop heat pipe. Applied Thermal Engineering, 2007, 27: 894–901
64 QSu, S Chang, YZhao, HZheng, CDang. A review of loop heat pipes for aircraft anti-icing applications. Applied Thermal Engineering, 2018, 130: 528–540
https://doi.org/10.1016/j.applthermaleng.2017.11.030
65 MReyes, D Alonso, JArias, AVelazquez. Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications. Applied Thermal Engineering, 2012, 37: 51–59
https://doi.org/10.1016/j.applthermaleng.2011.12.050
66 K SYang, T Y Yang, C W Tu, C T Yeh, M T Lee. A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energy Conversion and Management, 2015, 100: 37–44
https://doi.org/10.1016/j.enconman.2015.04.063
67 JQu, H Y Wu, Q Wang. Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1): 37–49
https://doi.org/10.1080/15567265.2011.645999
68 JE, R Zhu, JChen, YLong, X Hu. Oscillation heat transfer dynamic model for the new type oscillation looped heat pipe with double liquid slugs. Journal of Central South University, 2012, 19(11): 3194–3201
https://doi.org/10.1007/s11771-012-1395-5
69 JE, X Zhao, YDeng, HZhu. Pressure distribution and flow characteristics of closed oscillating heat pipe during starting process at different vacuum degrees. Applied Thermal Engineering, 2016, 93: 166–173
https://doi.org/10.1016/j.applthermaleng.2015.09.060
70 KEbrahimi, G F Jones, A S Fleischer. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable & Sustainable Energy Reviews, 2014, 31: 622–638
https://doi.org/10.1016/j.rser.2013.12.007
71 SSevencan, G Lindbergh, CLagergren, PAlvfors. Economic feasibility study of a fuel cell-based combined cooling, heating and power system for a data centre. Energy and Building, 2016, 111: 218–223
https://doi.org/10.1016/j.enbuild.2015.11.012
72 JWhitney, P Delforge. Data Center Efficiency Assessment. New York: Natural Resources Defense Council, 2014
73 H MDaraghmeh, CWang. A review of current status of free cooling in datacenters. Applied Thermal Engineering, 2017, 114: 1224–1239
https://doi.org/10.1016/j.applthermaleng.2016.10.093
74 FZhou, G Ma, SWang. Entropy generation rate analysis of a thermosyphon heat exchanger for cooling a telecommunication base station. International Journal of Exergy, 2017, 22(2): 139–157
https://doi.org/10.1504/IJEX.2017.083013
75 FZhou, C Li, WZhu, JZhou, G Ma, ZLiu. Energy-saving analysis of a case data center with a pump-driven loop heat pipe system in different climate regions in China. Energy and Building, 2018, 169: 295–304
https://doi.org/10.1016/j.enbuild.2018.03.081
76 L YZhang, Y Y Liu, X Guo, X ZMeng, L WJin, Q LZhang, W JHu. Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station. Applied Energy, 2017, 194: 499–507
https://doi.org/10.1016/j.apenergy.2016.06.023
77 L YZhang, Y Y Liu, L W Jin, X Liu, XMeng, QZhang. Economic analysis of gravity heat pipe exchanger applied in communication base station. Energy Procedia, 2016, 88: 518–525
https://doi.org/10.1016/j.egypro.2016.06.072
78 ZTong, T Ding, ZLi, X HLiu. An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center. Applied Thermal Engineering, 2015, 90: 362–365
https://doi.org/10.1016/j.applthermaleng.2015.07.019
79 HZhang, Z Shi, KLiu, SShao, T Jin, CTian. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers. Applied Thermal Engineering, 2017, 111: 1083–1090
https://doi.org/10.1016/j.applthermaleng.2016.10.029
80 HZhang, S Shao, CTian, KZhang. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers. Renewable & Sustainable Energy Reviews, 2018, 81(1): 789–798
https://doi.org/10.1016/j.rser.2017.08.011
81 HZhang, S Shao, HXu, HZou, C Tian. Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers. Applied Thermal Engineering, 2015, 75: 185–192
https://doi.org/10.1016/j.applthermaleng.2014.09.060
82 HZhang, S Shao, HXu, HZou, M Tang, CTian. Numerical investigation on fin tube three-fluid heat exchanger for hybrid source HVAC & R systems. Applied Thermal Engineering, 2016, 95: 157–164
https://doi.org/10.1016/j.applthermaleng.2015.10.158
83 NBlet, S Lips, VSartre. Heat pipes for temperature homogenization: a literature review. Applied Thermal Engineering, 2017, 118: 490–509
https://doi.org/10.1016/j.applthermaleng.2017.03.009
84 H NChaudhry, B R Hughes, S A Ghani. A review of heat pipe systems for heat recovery and renewable energy applications. Renewable & Sustainable Energy Reviews, 2012, 16(4): 2249–2259
https://doi.org/10.1016/j.rser.2012.01.038
85 YLiu, H Zhang. Experimental studies on the isothermal and heat transfer performance of trough solar power collectors. Advanced Materials Research, 2014, 1044–1045: 320–326
https://doi.org/10.4028/www.scientific.net/AMR.1044-1045.320
86 SRittidech, S Wannapakne. Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP). Applied Thermal Engineering, 2007, 27(11–12): 1978–1985
https://doi.org/10.1016/j.applthermaleng.2006.12.005
87 HKargarsharifabad, S JMamouri, M BShafii, M TRahni. Experimental investigation of the effect of using closed-loop pulsating heat pipe on the performance of a flat plate solar collector. Journal of Renewable and Sustainable Energy, 2013, 5(1): 013106
https://doi.org/10.1063/1.4780996
88 WHe, J Zhou, JHou, CChen, J Ji. Theoretical and experimental investigation of a thermoelectric cooling and heating system driven by solar. Applied Energy, 2013, 107: 89–97
https://doi.org/10.1016/j.apenergy.2013.01.055
89 K SOng. Review of solar, heat pipe and thermoelectric hybrid systems for power generation and heating. International Journal of Low Carbon Technologies, 2016, 11(4): 460–465
90 WBCSD. Energy Efficiency in Buildings Facts & Trends. World Business Council for Sustainable Development’s Report. Switzerland: Atar Roto Presse SA, 2008
91 DO’Connor, J K S Calautit, B R Hughes. A review of heat recovery technology for passive ventilation applications. Renewable & Sustainable Energy Reviews, 2016, 54: 1481–1493
https://doi.org/10.1016/j.rser.2015.10.039
92 DJafari, A Franco, SFilippeschi, PDi Marco. Two-phase closed thermosyphons: a review of studies and solar applications. Renewable & Sustainable Energy Reviews, 2016, 53: 575–593
https://doi.org/10.1016/j.rser.2015.09.002
93 EFirouzfar, M Soltanieh, S HNoie, S HSaidi. Energy saving in HVAC systems using nanofluid. Applied Thermal Engineering, 2011, 31(8–9): 1543–1545
https://doi.org/10.1016/j.applthermaleng.2011.01.029
94 PByrne, J Miriel, YLénat. Experimental study of an air-source heat pump for simultaneous heating and cooling–part 2: dynamic behavior and two-phase thermosiphon defrosting technique. Applied Thermal Engineering, 2011, 88: 3072–3078
95 HJouhara, H Merchant. Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units. Energy, 2012, 39(1): 82–89
https://doi.org/10.1016/j.energy.2011.08.054
96 JDanielewicz, M A Sayegh, B Sniechowska, MSzulgowska-Zgrzywa, HJouhara. Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers. Energy, 2014, 77: 82–87
https://doi.org/10.1016/j.energy.2014.04.107
97 PMeena, P Tammasaeng, JKanphirom, APonkho, SSetwong. Enhancement of the performance heat transfer of a thermosyphon with fin and without fin heat exchangers using Cu-nanofluid as working fluids. Journal of Engineering Thermophysics, 2014, 23(4): 331–340
https://doi.org/10.1134/S1810232814040110
98 L LVasiliev, L Vasiliev Jr. Sorption heat pipe—a new thermal control device for space and ground application. International Journal of Heat and Mass Transfer, 2005, 48(12): 2464–2472
https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.001
99 L LVasiliev, L Vasiliev Jr. The sorption heat pipe—a new device for thermal control and active cooling. Superlattices and Microstructures, 2004, 35(3–6): 485–495
https://doi.org/10.1016/j.spmi.2003.09.010
100 L LVasiliev. Sorption refrigerators with heat pipe thermal control. In: Cryogenics and Refrigeration–Proceedings of ICCR. Beijing: Science Press, 2003, 405–415
101 L LVasiliev. Solar sorption refrigerator. In: Proceeding of 5th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, 2003
102 L LVasiliev, D A Mishkinis, A A Antukh, L L Vasiliev Jr. Solar–gas solid sorption heat pump. Applied Thermal Engineering, 2001, 21(5): 573–583
https://doi.org/10.1016/S1359-4311(00)00069-7
103 L LVasiliev, L E Kanonchik, A A Antuh, A G Kulakov, V K Kulikovsky. Waste heat driven solid sorption coolers containing heat pipes for thermo control. Adsorption, 1995, 1(4): 303–312
https://doi.org/10.1007/BF00707353
104 L LVasiliev. Electronic cooling system with a loop heat pipe and solid sorption cooler. In: 11th International Heat Pipe Conference, Musachinoshi, Tokyo, Japan, 1999
105 L LVasiliev. Heat pipes and solid sorption machines. Heat Transfer Research, 2004, 35(5–6): 393–405
https://doi.org/10.1615/HeatTransRes.v35.i56.80
106 L WWang, R Z Wang, J Y Wu, Z Z Xia, K Wang. A new type adsorber for adsorption ice maker on fishing boats. Energy Conversion and Management, 2005, 46(13–14): 2301–2316
https://doi.org/10.1016/j.enconman.2004.09.010
107 KWang, J Y Wu, Z Z Xia, S L Li, R Z Wang. Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats. Renewable Energy, 2008, 33(4): 780–790
https://doi.org/10.1016/j.renene.2007.04.023
108 Z SLu, R Z Wang, T X Li, L W Wang, C J Chen. Experimental investigation of a novel multifunction heat pipe solid sorption icemaker for fishing boats using CaCl2/activated carbon compound–ammonia. International Journal of Refrigeration, 2007, 30(1): 76–85
https://doi.org/10.1016/j.ijrefrig.2006.07.001
109 E J, X Zhao, HLiu, JChen, W Zuo, QPeng. Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe. Applied Energy, 2016, 175: 218–228
https://doi.org/10.1016/j.apenergy.2016.05.028
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed