Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 9-15   https://doi.org/10.1007/s11708-019-0611-5
  本期目录
金属燃料电池MnO2催化阴极研究
魏松波, 刘合(), 魏然, 陈琳
中国石油勘探开发研究院,中国北京 100083
Cathodes with MnO2 catalysts for metal fuel battery
Songbo WEI, He LIU(), Ran WEI, Lin CHEN
PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
 全文: PDF(1639 KB)   HTML
摘要:

本论文制备了含MnO2催化材料的系列金属燃料电池阴极。研究了催化剂浆料超声时间和阴极干燥温度对电极性能的影响规律,催化剂浆料的超声处理时间分别选用20min、40min和60min,阴极的干燥温度分别选用90℃、120℃和150℃。开展了电极的显微结构和放电特性研究,研究结果表明浆料超声时间和阴极干燥温度对放电电流密度有显著影响,而对电压影响不明显。进一步研究了氧气对电流密度和电压的影响规律,研究发现对阴极输送氧气能够明显提高金属电池的电流密度。

Abstract

A series of cathodes with MnO2 catalysts of metal fuel battery were prepared. The catalyst slurry was treated by ultrasonic dispersion under the ultrasonic time of 20 min, 40 min and 60 min. The cathodes were also dried with the temperature of 90°C, 120°C and 150°C. Besides, the microstructures of the cathodes and discharging performance were investigated. The results indicated that the ultrasonic time and drying temperature had a remarkable influence on the electric current densities, but had little effect on the open-circuit voltage. The effects of oxygen on the current density and voltage of cathode were also studied, and it was found that the method of blowing oxygen to cathode could increase the current density of the metal fuel battery.

Key wordsmetal fuel battery    cathode    current density    ultrasonic dispersion    oxygen supply
收稿日期: 2018-05-15      出版日期: 2019-03-20
通讯作者: 刘合     E-mail: liuhe@petrochina.com.cn
Corresponding Author(s): He LIU   
 引用本文:   
魏松波, 刘合, 魏然, 陈琳. 金属燃料电池MnO2催化阴极研究[J]. Frontiers in Energy, 2019, 13(1): 9-15.
Songbo WEI, He LIU, Ran WEI, Lin CHEN. Cathodes with MnO2 catalysts for metal fuel battery. Front. Energy, 2019, 13(1): 9-15.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0611-5
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/9
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 YLiu, Q Sun, WLi, K RAdair, JLi, X Sun. A comprehensive review on recent progress in aluminum air batteries. Green Energy & Environment, 2017, 2(3): 246–277
https://doi.org/10.1016/j.gee.2017.06.006
2 B GPollet, I Staffell, J LShang. Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochimica Acta, 2012, 84: 235–249
https://doi.org/10.1016/j.electacta.2012.03.172
3 BDunn, H Kamath, J MTarascon. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935
https://doi.org/10.1126/science.1212741
4 QLi, N J Bjerrum. Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources, 2002, 110(1): 1–10
https://doi.org/10.1016/S0378-7753(01)01014-X
5 P GBruce, S A Freunberger, L J Hardwick, J M Tarascon. Li-O2 and Li-S batteries with high energy storage. Nature Materials, 2012, 11(1): 19–29
https://doi.org/10.1038/nmat3191
6 THaneda, Y Ono, TIkegami, AAkisawa. Technological assessment of residential fuel cells using hydrogen supply systems for fuel cell vehicles. International Journal of Hydrogen Energy, 2017, 42(42): 26377–26388
https://doi.org/10.1016/j.ijhydene.2017.08.152
7 E L VEriksson, E MGray. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems –– a critical review. Applied Energy, 2017, 202: 348–364
https://doi.org/10.1016/j.apenergy.2017.03.132
8 GWu. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Frontiers in Energy, 2017, 11(3): 286–298
https://doi.org/10.1007/s11708-017-0477-3
9 R BMoghaddam, SShahgaldi, XLi. A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application. Frontiers in Energy, 2017, 11(3): 245–253
https://doi.org/10.1007/s11708-017-0492-4
10 CZhang, X Shen, YPan, ZPeng. A review of Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Energy, 2017, 11(3): 268–285
https://doi.org/10.1007/s11708-017-0466-6
11 M ARahman, X Wang, CWen. High energy density metal-air batteries: a review. Journal of the Electrochemical Society, 2013, 160(10): A1759–A1771
https://doi.org/10.1149/2.062310jes
12 FCheng, J Chen. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012, 41(6): 2172–2192
https://doi.org/10.1039/c1cs15228a
13 TDanner, S Eswara, V PSchulz, ALatz. Characterization of gas diffusion electrodes for metal-air batteries. Journal of Power Sources, 2016, 324: 646–656
https://doi.org/10.1016/j.jpowsour.2016.05.108
14 MMokhtar, M Z M Talib, E H Majlan, S M Tasirin, W M F W Ramli, W R W Daud, J Sahari. Recent developments in materials for aluminum–air batteries: a review. Journal of Industrial and Engineering Chemistry, 2015, 32: 1–20
https://doi.org/10.1016/j.jiec.2015.08.004
15 YLiu, Q Sun, WLi, K RAdair, JLi, X Sun. A comprehensive review on recent progress in aluminum air batteries. Green Energy & Environment, 2017, 2(3): 246–277
https://doi.org/10.1016/j.gee.2017.06.006
16 KLiu, Z Peng, HWang, YRen, D Liu, JLi, YTang, N Zhang. Fe3C@Fe/N doped graphene-like carbon sheets as a highly efficient catalyst in al-air batteries. Journal of the Electrochemical Society, 2017, 164(6): F475–F483
https://doi.org/10.1149/2.0171706jes
17 XWang, P J Sebastian, M A Smit, H Yang, S AGamboa. Studies on the oxygen reduction catalyst for zinc–air battery electrode. Journal of Power Sources, 2003, 124(1): 278–284
https://doi.org/10.1016/S0378-7753(03)00737-7
18 RMori. Electrochemical properties of a rechargeable aluminum–air battery with a metal–organic framework as air cathode material. RSC Advances, 2017, 7(11): 6389–6395
https://doi.org/10.1039/C6RA25164A
19 F H BLima, M LCalegaro, E ATicianelli. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochimica Acta, 2007, 52(11): 3732–3738
https://doi.org/10.1016/j.electacta.2006.10.047
20 FCheng, Y Su, JLiang, ZTao, J Chen. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chemistry of Materials, 2010, 22(3): 898–905
https://doi.org/10.1021/cm901698s
21 H RByon, J Suntivich, YShao-Horn. Graphene-based non-noble-netalcatalysts for oxygen reduction reaction in acid. Chemistry of Materials, 2011, 23(15): 3421–3428
https://doi.org/10.1021/cm2000649
22 LYu. Preparation of PTFE microporous fiber with catalytic capability. Dissertation for the Master’s Degree. Hangzhou: Zhejiang Sci-Tech University, 2009 (in Chinese)
23 WYang, Y Li, BLi. Influence of ultrasonic pretreatment on modification effect of nano-sized titanium dioxide. Inorganic Chemicals Industry, 2008, 40(8): 27–29
24 YWang, X Zeng, HLiu, SSong. Effect of preparation conditions of catalyst in on the electrochemical properties of Pt/C catalyst. Chinese Journal of Catalysis, 2011, 32(1): 184–188
25 CCui. Research and preparation of air electrode for zinc-air battery. Dissertation for the Master’s Degree. Harbin: Harbin Institute of Technology, 2013 (in Chinese)
26 XWang, P J Sebastian, M A Smit, H Yang, S AGamboa. Studies on the oxygen reduction catalyst for zinc–air battery electrode. Journal of Power Sources, 2003, 124(1): 278–284
https://doi.org/10.1016/S0378-7753(03)00737-7
27 BYan. Preparation and characterization of air cathode for aluminum-air battery. Dissertation for the Master’s Degree. Harbin: Harbin Institute of Technology, 2010 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed