Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2021, Vol. 15 Issue (2): 539-549   https://doi.org/10.1007/s11708-019-0617-z
  本期目录
Improvement to observability measures of LFO modes in power systems with DFIGs
Shenghu LI()
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
 全文: PDF(599 KB)   HTML
Abstract

Observation of the low-frequency oscillation (LFO) modes in power systems is important to design the damping scheme. The state equations of the power system with the doubly-fed induction generators (DFIGs) are derived to find the LFO modes related to the synchronous generator (SGs) and the DFIGs. The definition of the observability measure is improved to consider the initial output and the attenuation speed of the modes. The sensitivities of the observability measures to the control parameters are derived. The numerical results from the small and large-disturbance validate the LFO modes caused by the DFIGs, and different observability measures are compared. Adjustment of the control parameters is chosen based on the sensitivity model to improve the observability and damping ratio of the LFO mode, and the stability of the wind power system.

Key wordswind power system    low-frequency oscillation (LFO)    observability measure    sensitivity    doubly-fed induction generator (DFIG)
收稿日期: 2018-05-05      出版日期: 2021-06-18
Corresponding Author(s): Shenghu LI   
 引用本文:   
. [J]. Frontiers in Energy, 2021, 15(2): 539-549.
Shenghu LI. Improvement to observability measures of LFO modes in power systems with DFIGs. Front. Energy, 2021, 15(2): 539-549.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0617-z
https://academic.hep.com.cn/fie/CN/Y2021/V15/I2/539
Fig.1  
Fig.2  
Controllers kp ki (p.u.)
Pitch angle control 10.0 0.30
RSC Power loop Active power (1) 0.60 0.25
Reactive power (2) 1.50 0.65
Current loop d axis (3) 0.27 0.017
q axis (4) 0.27 0.017
GSC Power loop Active power (5) 0.012 0.0006
Reactive power (6) 1.20 0.50
Current loop d axis (7) 0.70 0.40
q axis (8) 0.70 0.40
Tab.1  
Mode li (p.u.) Related state variables
(Ignoring D for convenience)
1 0 d
2 –60.92 Ed"
3/4 –26.84±j27.01 EE2, EE3, EE4
5 –21.21 Eq", EE2, EE4, PSS3
6/7 –7.93±j0.86 Eq', Eq", dw, EE2, EE4, GG1, GG2, GG3, PSS1, PSS2, PSS3
8/9 –0.92±j2.97 Eq', dw, EE2, EE4, GG1, GG2, GG3, PSS1, PSS2
10 –0.7023 Eq', dw, EE2, EE4, GG2, GG3, PSS1, PSS2
11 –1.2528 Eq', Eq", EE2, PSS2
12 –0.1086 GG2, GG3, PSS2
13 –5.0000 PSS1
14 –0.1000 GG3, PSS2
15 –33.33 EE1
Tab.2  
Mode li (p.u.)
5/6 –0.7326±j311.93
12/13 –0.2600±j2.85
15/16 –1.4876±j15.88
17/18* –0.0858±j0.84
Tab.3  
Mode Mjia/(p.u.) Mjib/(p.u.) Mjic/(p.u.)
from P from Q from P from Q from P from Q
SG 3/4 0.0261 0.0132 0.0145 0.4931 3 × 1014 1 × 1012
6/7 0.3969 0.2015 0.2205 7.5098 8 × 105 0.0027
8/9 0.0378 0.0186 0.0210 0.6923 0.0083 0.2746
DFIG 5/6 0.4488 0.3053 0.3740 0.7633 0.1810 0.3695
12/13 0.0684 1 × 1015 0.0570 3 × 1015 0.0439 2 × 1015
15/16 0.0017 1 × 1013 0.0014 4 × 1013 3 × 104 8 × 1014
17/18 0.0063 5 × 1014 0.0053 1 × 1013 0.0048 1 × 1013
Tab.4  
Mode l/(p.u.) w/Hz x r Relation
162/163* –0.0373±j0.26 0.041 0.1432 0.0427
50/51 –1.40±j13.08 2.0819 0.1062 21.78 SG
54/55 –1.30±j11.94 1.8997 0.1085 16.85
56/57 –0.82±j11.48 1.8267 0.0715 106.33
58/59 –0.89±j10.82 1.7226 0.0815 98.27
60/61 –0.99±j9.85 1.5670 0.0998 13.15
62/63 –0.49±j9.62 1.5307 0.0509 25.20
86/87 –0.85±j8.11 1.2909 0.1043 13.58
88/89 –0.52±j7.69 1.2245 0.0673 26.09
143/144 –0.086±j0.84 0.1332 0.1021 >103** DFIG
Tab.5  
Output Observability measure/(p.u.)
Mjia Mjib Mji*a Mji*b
V SG 1 0.043419 0.026595 0.041351 0.025329
DFIG 0.023040 0.014112 0.022116 0.013547
P SG 1 0.790767 0.484362 0.439315 0.269090
DFIG 0.007527 0.004611 0.006273 0.003842
Q SG 1 0.043253 0.026494 1.612400 0.987630
DFIG 0.000033 0.000020 0.000083 0.000051
d DFIG 0.046680 0.028593 0.040740 0.024954
Tab.6  
Output Observability measure/(p.u.)
Mjia Mjib Mji*a Mji*b
V SG 1 0.000379 0.000348 0.000361 0.000331
DFIG 0.001586 0.001455 0.001522 0.001397
P SG 1 0.004329 0.003973 0.002405 0.002207
DFIG 0.072576 0.066600 0.060480 0.055500
Q SG 1 0.000381 0.000350 0.014210 0.013040
DFIG 0.000000 0.000000 0.000001 0.000001
d DFIG 0.045303 0.041573 0.039537 0.036282
Tab.7  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
t λ/τ(p.u.) ξ/ τ(p.u.)
kp1 (–3.75±0.37i) × 103 4.46 × 103
ki1 0.0043±1.4084i –0.1752
kp2 (1.26±0.057i) × 106 –1.49 × 106
ki2 (–0.27±4.70i) × 104 8.86 × 105
ki3 (–1.65±1.41i) × 108 1.77 × 108
kp4 (–0.43±3.64i) × 108 7 × 1010
ki4 (1.37±0.02i) × 105 –1.61 × 105
kp6 (–6.36±3.59i) × 104 7.91 × 104
ki6 –0.1091±0.2498i 9.82 × 102
ki7 (1.74±2.10i) × 108 –2.30 × 108
ki8 (–3.46±2.18i) × 108 4.33 × 108
Tab.8  
Observation from Mjia/(p.u.) Sen. to kp1 Sen. to ki1 Sen. to ki6
SG 1 0.004329 1 × 105 –0.021 8.1
DFIG 0.072576 3 × 105 –0.367 134.3
Observation from Mjib/(p.u.) Sen. to kp1 Sen. to ki1 Sen. to ki6
SG 1 0.003973 –1 × 105 0 –1 × 105
DFIG 0.066600 –2.2 × 104 2 × 105 –1.8 × 104
Observation from Mji*a/(p.u.) Sen. to kp1 Sen. to ki1 Sen. to ki6
SG 1 0.002405 –0.021 –0.012 –0.012
DFIG 0.060480 –0.361 –0.306 –0.301
Observation from Mji*b/(p.u.) Sen. to kp1 Sen. to ki1 Sen. to ki6
SG 1 0.002207 7.2 4.5 4.0
DFIG 0.055500 120.7 111.9 100.6
Tab.9  
Mode l/(p.u.) w/Hz Relation
161/162* –0.0421±0.25i 0.0399
50/51 –1.3814±13.13i 2.0899 SG
54/55 –1.2984±11.94i 1.8999
56/57 –0.8232±11.49i 1.8295
58/59 –0.8831±10.84i 1.7258
60/61 –0.9791±9.87i 1.5712
62/63 –0.4884±9.64i 1.5337
86/87 –0.8527±8.11i 1.2913
88/89 –0.5178±7.70i 1.2256
143/144** –0.086±0.84i 0.1332 DFIG
Tab.10  
Output Observability measure/(p.u.)
Mjia Mjib Mji*a Mji*b
V SG 1 0.000392 0.000359 0.000373 0.000342
DFIG 0.001609 0.001476 0.001525 0.001399
P SG 1 0.004385 0.004023 0.002436 0.002235
DFIG 0.073572 0.067489 0.061310 0.056241
Q SG 1 0.000343 0.000315 –0.024200 –0.022199
DFIG 0.000000 0.000000 0.000001 0.000001
d DFIG 0.045838 0.042048 0.039998 0.036691
Tab.11  
1 D N Kosterev, C W Taylor, W A Mittelstadt. Model validation for the August 10, 1996 WSCC system outage. IEEE Transactions on Power Systems, 1999, 14(3): 967–979
https://doi.org/10.1109/59.780909
2 M Klein, G J Rogers, P Kundur. A fundamental study of inter-area oscillations in power systems. IEEE Transactions on Power Systems, 1991, 6(3): 914–921
https://doi.org/10.1109/59.119229
3 IEEE. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. 2016,
4 M Jafarian, A M Ranjbar. Interaction of the dynamics of doubly fed wind generators with power system electromechanical oscillations. IET Renewable Power Generation, 2013, 7(2): 89–97
https://doi.org/10.1049/iet-rpg.2012.0138
5 J G Slootweg, W L Kling. The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 2003, 67(1): 9–20
https://doi.org/10.1016/S0378-7796(03)00089-0
6 T Knüppel, J N Nielsen, K H Jensen, A Dixon, J Østergaard. Power oscillation damping capabilities of wind power plant with full converter wind turbines considering its distributed and modular characteristics. IET Renewable Power Generation, 2013, 7(5): 431–442
https://doi.org/10.1049/iet-rpg.2012.0030
7 R D Fernández, R J Mantz, P E Battaiotto. Potential contribution of wind farms to damp oscillations in weak grids with high wind penetration. Renewable & Sustainable Energy Reviews, 2008, 12(6): 1692–1711
https://doi.org/10.1016/j.rser.2007.01.013
8 R D Fernández, P E Battaiotto, R J Mantz. Wind farm non-linear control for damping electromechanical oscillations of power systems. Renewable Energy, 2008, 33(10): 2258–2265
https://doi.org/10.1016/j.renene.2008.01.004
9 J Morato, T Knuppel, J Ostergaard. Residue-based evaluation of the use of wind power plants with full converter wind turbines for power oscillation damping control. IEEE Transactions on Sustainable Energy, 2014, 5(1): 82–89
https://doi.org/10.1109/TSTE.2013.2273232
10 J L Domínguez-García, C E Ugalde-Loo, F Bianchi, O Gomis-Bellmunt. Input-output signal selection for damping of power system oscillations using wind power plants. International Journal of Electrical Power & Energy Systems, 2014, 58: 75–84
https://doi.org/10.1016/j.ijepes.2014.01.001
11 Y Liu, J R Gracia, T J King, Y Liu. Frequency regulation and oscillation damping contributions of variable-speed wind generators in the US eastern interconnection (EI). IEEE Transactions on Sustainable Energy, 2015, 6(3): 951–958
https://doi.org/10.1109/TSTE.2014.2318591
12 M Singh, A J Allen, E Muljadi, V Gevorgian, Y Zhang, S Santoso. Interarea oscillation damping controls for wind power plants. IEEE Transactions on Sustainable Energy, 2015, 6(3): 967–975
https://doi.org/10.1109/TSTE.2014.2348491
13 Z Miao, L Fan, D Osborn, S Yuvarajan. Control of DFIG-based wind generation to improve interarea oscillation damping. IEEE Transactions on Energy Conversion, 2009, 24(2): 415–422
https://doi.org/10.1109/TEC.2009.2015980
14 H Li, S Liu, H Ji, D Yang, C Yang, H Chen, B Zhao, Y Hu, Z Chen. Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system. International Journal of Electrical Power & Energy Systems, 2014, 61: 279–287
https://doi.org/10.1016/j.ijepes.2014.03.009
15 M Mokhtari, F Aminifar. Toward wide-area oscillation control through doubly-fed induction generator wind farms. IEEE Transactions on Power Systems, 2014, 29(6): 2985–2992
https://doi.org/10.1109/TPWRS.2014.2309012
16 A E Leon, J Solsona. Power oscillation damping improvement by adding multiple wind farms to wide-area coordinating controls. IEEE Transactions on Power Systems, 2014, 29(3): 1356–1364
https://doi.org/10.1109/TPWRS.2013.2289970
17 S Li. Low-frequency oscillations of wind power systems caused by doubly-fed induction generators. Renewable Energy, 2017, 104: 129–138
https://doi.org/10.1016/j.renene.2016.11.053
18 X Liu, D McSwiggan, T B Littler, J Kennedy. Measurement-based method for wind farm power system oscillations monitoring. IET Renewable Power Generation, 2010, 4(2): 198–209
https://doi.org/10.1049/iet-rpg.2009.0110
19 M Göl, A Abur. Observability and criticality analyses for power systems measured by phasor measurements. IEEE Transactions on Power Systems, 2013, 28(3): 3319–3326
https://doi.org/10.1109/TPWRS.2012.2236367
20 H Liao. Power system harmonic state estimation and observability analysis via sparsity maximization. IEEE Transactions on Power Systems, 2007, 22(1): 15–23
https://doi.org/10.1109/TPWRS.2006.887957
21 R Kavasseri, S K Srinivasan. Joint placement of phasor and power flow measurements for observability of power systems. IEEE Transactions on Power Systems, 2011, 26(4): 1929–1936
https://doi.org/10.1109/TPWRS.2011.2130544
22 F Rashidi, E Abiri, T Niknam, M R Salehi. Optimal placement of PMUs with limited number of channels for complete topological observability of power systems under various contingencies. International Journal of Electrical Power & Energy Systems, 2015, 67: 125–137
https://doi.org/10.1016/j.ijepes.2014.11.015
23 R Babu, B Bhattacharyya. Optimal allocation of phasor measurement unit for full observability of the connected power network. International Journal of Electrical Power & Energy Systems, 2016, 79: 89–97
https://doi.org/10.1016/j.ijepes.2016.01.011
24 A A Saleh, A S Adail, A A Wadoud. Optimal phasor measurement units placement for full observability of power system using improved particle swarm optimisation. IET Generation, Transmission & Distribution, 2017, 11(7): 1794–1800
https://doi.org/10.1049/iet-gtd.2016.1636
25 J J Sanchez-Gasca, J H Chow. Power system reduction to simplify the design of damping controllers for interarea oscillations. IEEE Transactions on Power Systems, 1996, 11(3): 1342–1349
https://doi.org/10.1109/59.535675
26 C Wang, C Ding, P Li, J Wu, H Yu. Model order reduction for transient simulation of active distribution networks. IET Generation, Transmission & Distribution, 2015, 9(5): 457–467
https://doi.org/10.1049/iet-gtd.2014.0219
27 J Qi, J Wang, H Liu, A D Dimitrovski. Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances. IEEE Transactions on Power Systems, 2017, 32(1): 114–126
https://doi.org/10.1109/TPWRS.2016.2557760
28 M Tarokh. Measures for controllability, observability and fixed modes. IEEE Transactions on Automatic Control, 1992, 37(8): 1268–1273
https://doi.org/10.1109/9.151124
29 T Williams, X Cheng. Degrees of controllability and observability for close modes of flexible space structures. IEEE Transactions on Automatic Control, 1999, 44(9): 1791–1795
https://doi.org/10.1109/9.788555
30 K Pundur. Power System Stability and Control. New York: McGraw-Hill Press, 1994
31 U P Mhaskar, A M Kulkarni. Power oscillation damping using FACTS devices: modal controllability, observability in local signals, and location of transfer function zeros. IEEE Transactions on Power Systems, 2006, 21(1): 285–294
https://doi.org/10.1109/TPWRS.2005.856983
32 F Xiao, Y Sun, F Yang, L Cheng. Inter-area damping controller design based on mode controllability and observability. In: International Power Engineering Conference, Singapore, 2007, 95–99
33 S Li. Power flow modeling to doubly-fed induction generators (DFIGs) under power regulation. IEEE Transactions on Power Systems, 2013, 28(3): 3292–3301
https://doi.org/10.1109/TPWRS.2013.2251914
34 M Tarokh. Measures for controllability, observability and fixed modes. IEEE Transactions on Automatic Control, 1992, 37(8): 1268–1273
https://doi.org/10.1109/9.151124
35 Reliability Test System Task Force. IEEE reliability test system. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(6): 2047–2054
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed