Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (3): 570-577   https://doi.org/10.1007/s11708-019-0642-y
  研究论文 本期目录
一种由玻璃微珠与自蒸发气冷屏组成的新型液氢贮箱复合被动绝热系统
郑建朋1, 陈六彪2(), 王平3, 张敬杰3, 王俊杰1(), 周远1
1. 中国科学院理化技术研究所低温工程学重点实验室,北京100190
2. 中国科学院大学,北京100049
3. 中国科学院理化技术研究所航天低温推进剂技术国家重点实验室,北京100190
A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage
Jianpeng ZHENG1, Liubiao CHEN2(), Ping WANG3, Jingjie ZHANG3, Junjie WANG1(), Yuan ZHOU1
1. Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
2. Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
3. Chinese Academy of Sciences State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, China
 全文: PDF(1279 KB)   HTML
摘要:

液氢由于储能密度高而受到广泛关注。由于液氢沸点低(20 K),蒸发损失是其贮存过程中面临的一个突出问题,因而高效绝热技术是目前液氢贮存研究中的一个重要关注点。玻璃微珠由于表观热导率低,安装速度快(与多层材料相比,可以在短时间内注入)和维护简单等特点,成为一种有应用前景的绝热材料。本文提出一种由玻璃微珠和自蒸发气冷屏组成的新型低温绝热系统。建立了一个复合被动绝热模型对玻璃微珠和自蒸发气冷屏的耦合传热特性进行分析。结果表明,组合使用玻璃微珠和自蒸发气冷屏可以有效减少液氢贮箱的漏热。当冷屏数量从1个增加到3个,贮箱漏热分别减少了57.36%,65.29%和68.21%。玻璃微珠的另一个显著优点是其绝热性能对真空度的变化不敏感。当真空度从103 Pa升高到1 Pa时,贮箱漏热增加只有约20%。当真空度从103 Pa升高到100 Pa时,与单一使用玻璃微珠方式相比,组合使用玻璃微珠和冷屏的方式可以使漏热降低58.08%–69.84%。

Abstract

Liquid hydrogen (LH2) attracts widespread attention because of its highest energy storage density. However, evaporation loss is a serious problem in LH2 storage due to the low boiling point (20 K). Efficient insulation technology is an important issue in the study of LH2 storage. Hollow glass microspheres (HGMs) is a potential promising thermal insulation material because of its low apparent thermal conductivity, fast installation (Compared with multi-layer insulation, it can be injected in a short time.), and easy maintenance. A novel cryogenic insulation system consisting of HGMs and a self-evaporating vapor-cooled shield (VCS) is proposed for storage of LH2. A thermodynamic model has been established to analyze the coupled heat transfer characteristics of HGMs and VCS in the composite insulation system. The results show that the combination of HGMs and VCS can effectively reduce heat flux into the LH2 tank. With the increase of VCS number from 1 to 3, the minimum heat flux through HGMs decreases by 57.36%, 65.29%, and 68.21%, respectively. Another significant advantage of HGMs is that their thermal insulation properties are not sensitive to ambient vacuum change. When ambient vacuum rises from 103 Pa to 1 Pa, the heat flux into the LH2 tank increases by approximately 20%. When the vacuum rises from 103 Pa to 100 Pa, the combination of VCS and HGMs reduces the heat flux into the tank by 58.08%–69.84% compared with pure HGMs.

Key wordsliquid hydrogen storage    hollow glass microspheres (HGMs)    self-evaporation vapor-cooled shield (VCS)    thermodynamic optimization
收稿日期: 2019-02-09      出版日期: 2020-09-14
通讯作者: 陈六彪,王俊杰     E-mail: chenliubiao@mail.ipc.ac.cn;wangjunjie@mail.ipc.ac.cn
Corresponding Author(s): Liubiao CHEN,Junjie WANG   
 引用本文:   
郑建朋, 陈六彪, 王平, 张敬杰, 王俊杰, 周远. 一种由玻璃微珠与自蒸发气冷屏组成的新型液氢贮箱复合被动绝热系统[J]. Frontiers in Energy, 2020, 14(3): 570-577.
Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage. Front. Energy, 2020, 14(3): 570-577.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0642-y
https://academic.hep.com.cn/fie/CN/Y2020/V14/I3/570
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
HGMs Heat flux into tank/(W?m2)
0.001 Pa 0.01 Pa 0.1 Pa 1 Pa 10 Pa 100 Pa
Without VCS 0.896 0.897 0.973 1.078 2.384 6.796
1 VCS 0.376 0.376 0.408 0.452 1.000 2.849
2 VCSs 0.308 0.308 0.334 0.370 0.818 2.333
3 VCSs 0.285 0.285 0.309 0.343 0.758 2.160
Tab.1  
1 X H Yan, X Zhang, C H Gu, F Li. Power to gas: addressing renewable curtailment by converting to hydrogen. Frontiers in Energy, 2018, 12(4): 560–568
https://doi.org/10.1007/s11708-018-0588-5
2 A Khosravi, R N N Koury, L Machado, J J G Pabon. Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system. Energy, 2018, 148: 1087–1102
https://doi.org/10.1016/j.energy.2018.02.008
3 A Mostafaeipour, M Qolipour, H Goudarzi. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran. Frontiers in Energy, 2018: 1–12
https://doi.org/10.1007/s11708-018-0588-5
4 V L Pachapur, S J Sarma, S K Brar, Y L Bihan, G Buelna, M Verma . Energy balance of hydrogen production from wastes of biodiesel production. Biofuels, 2018, 9(2): 129–138
https://doi.org/10.1080/17597269.2016.1153361
5 X P Chen, W F Shangguan. Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Frontiers in Energy, 2013, 7(1): 111–118
https://doi.org/10.1007/s11708-012-0228-4
6 A Ozarslan. Large-scale hydrogen energy storage in salt caverns. International Journal of Hydrogen Energy, 2012, 37(19): 14265–14277
https://doi.org/10.1016/j.ijhydene.2012.07.111
7 A M Abdalla, S Hossain, P M Petra, M Ghasemi, A K. AzadAchievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018: 1–24
https://doi.org/10.1007/s11708-018-0546-2
8 L J Hastings, A Hedayat, T M Brown. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage. Technical Report, NASA/TM-2004-213175, 2004
9 J J Martin, L Hastings. Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate. Technical Report, NASA/TM-2001–211089, 2001
10 C J Tseng, M Yamaguchi, T Ohmori. Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics, 1997, 37(6): 305–312
https://doi.org/10.1016/S0011-2275(97)00023-4
11 Z Liu, Y Z Li, F S Xie, K Zhou. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period. Applied Thermal Engineering, 2016, 98(5): 430–439
https://doi.org/10.1016/j.applthermaleng.2015.12.084
12 Q Wang, J Chen, B Q Gui, T Zhai, D Yang. Fabrication and properties of thermal insulating material using hollow glass microspheres bonded by aluminum-chrome-phosphate and tetraethyl orthosilicate. Ceramics International, 2016, 42(4): 4886–4892
https://doi.org/10.1016/j.ceramint.2015.12.003
13 J E Fesmire, J P Sass. Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics, 2008, 48(5–6): 223–231
https://doi.org/10.1016/j.cryogenics.2008.03.014
14 J S Zhang, T S Fisher, P V Ramachandran, J P Gore, I Mudawar. A review of heat transfer issues in hydrogen storage technologies. Journal of Heat Transfer, 2005, 127(12): 1391–1399
https://doi.org/10.1115/1.2098875
15 F Wang, J S Liang, Q G Tang, N Wang, L W Li. Preparation and properties of thermal insulation latex paint for exterior wall based on defibred sepiolite and hollow glass microspheres. Advanced Materials Research, 2009, 58: 103–108
https://doi.org/10.4028/www.scientific.net/AMR.58.103
16 C D Li, B H Li, N Pan, Z Chen, M U Saeed, T Xu, Y Yang. Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel. Energy and Building, 2016, 125: 298–309
https://doi.org/10.1016/j.enbuild.2016.05.013
17 K Q Yan, P Wang, J J Zhang. Progress in the cryogenic insulation of hollow glass microspheres. Vacuum and Cryogenics, 2016, 22(2): 63–69
18 J P Sass, W W S Cyr, T M Barrett, R G Baumgartner, J W Lott, J E Fesmire, J G Weisend. Glass bubbles insulation for liquid hydrogen storage tanks. AIP Conference Proceedings, 2010, 1218: 772–779
https://doi.org/10.1063/1.3422430
19 P Wang, B Liao, Z G An, K Yan, J Zhang. Measurement and calculation of cryogenic thermal conductivity of HGMs. International Journal of Heat and Mass Transfer, 2019, 129: 591–598
https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.113
20 M S Allen, R G Baumgartner, J E Fesmire, S D. AugustynowiczAdvances in microsphere insulation systems. AIP Conference Proceedings, 2004, 710: 619–626
https://doi.org/10.1063/1.1774735
21 J Yuan, Z An, B Li, J Zhang. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres. Particuology, 2012, 10(4): 475–479
https://doi.org/10.1016/j.partic.2011.08.005
22 J P Zheng, L B Chen, J Wang, Y Zhou, J Wang. Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank. Energy Conversion and Management, 2019, 184: 74–82
https://doi.org/10.1016/j.enconman.2018.12.053
23 W B Jiang, Z Q Zuo, Y H Huang, B Wang, P J Sun, P Li. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank. Cryogenics, 2018, 96: 90–98
https://doi.org/10.1016/j.cryogenics.2018.10.008
24 R E Skochdopole. The thermal conductivity of foamed plastics. Chemical Engineering Progress, 1961, 57(10): 55–59
25 P Wang. Research and application of vacuum thermal insulation performance of hollow glass microspheres. Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese)
26 K C Yung, B L Zhu, T M Yue, C Xie. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Composites Science and Technology, 2009, 69(2): 260–264
https://doi.org/10.1016/j.compscitech.2008.10.014
27 J E Fesmire, S D Augustynowicz. Thermal performance testing of glass microspheres under cryogenic vacuum conditions. AIP Conference Proceedings, 2004, 710(1): 612–618
https://doi.org/10.1063/1.1774734
28 G R Cunnington, C L Tien. Apparent thermal conductivity of uncoated microsphere cryogenic insulation. Advances in Cryogenic Engineering, 1977, 22: 263–271
https://doi.org/10.1007/978-1-4613-9850-9_28
29 Q Zhu, H Lee, Z M Zhang. Radiative properties of materials with surface scattering or volume scattering: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 60–79
https://doi.org/10.1007/s11708-009-0011-3
30 L Schlapbach, A Züttel. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358
https://doi.org/10.1038/35104634
31 J P Zheng, L B Chen, J Wang, X Xi, H Zhu, Y Zhou, J Wang. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Conversion and Management, 2019, 186: 526–534
https://doi.org/10.1016/j.enconman.2019.02.073
32 J L Yang, J B Tang. Influence of envelope insulation materials on building energy consumption. Frontiers in Energy, 2017, 11(4): 575–581
https://doi.org/10.1007/s11708-017-0473-7
33 C L Lim, N M Adam, K A Ahmad. Cryogenic pipe flow simulation for liquid nitrogen with vacuum insulated pipe (VIP) and Polyurethane (PU) foam insulation under steady-state conditions. Thermal Science and Engineering Progress, 2018, 7: 302–310
https://doi.org/10.1016/j.tsep.2018.07.009
34 J P Zheng, L B Chen, C Cui, J Guo, W Zhu, Y Zhou, J Wang. Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation. Applied Thermal Engineering, 2018, 130: 161–168
https://doi.org/10.1016/j.applthermaleng.2017.11.050
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed