Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (1): 71-80   https://doi.org/10.1007/s11708-019-0652-9
  本期目录
基于MoO2/Mo甲烷还原的太阳能热化学循环制氢热力学评估
JIN Jiahui1, WANG Lei2, FU Mingkai3(), LI Xin2, LU Yuanwei1()
1. 北京工业大学环境与能源工程学院
2. 中国科学院电气工程研究所; 中国科学院大学
3. 中国科学院电气工程研究所
Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction
Jiahui JIN1, Lei WANG2, Mingkai FU3(), Xin LI2, Yuanwei LU1()
1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, China
2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1537 KB)   HTML
摘要:

受基于非化学计量氧化物的太阳能热化学循环(STC)中制氢前景和甲烷还原的操作降温效应的启发,研究了一种基于MoO2/Mo的高燃料选择性和引入CH4的太阳能热化学循环。通过HSC仿真,比较了等温和非等温操作条件下的能量提升和能量转换势。在还原步骤中,发现MoO2:CH4 = 2和1020 K < Tred <1600 K最有利于合成气选择性和甲烷转化。与没有CH4的STC循环相比,甲烷的引入会产生更高的氢气产量,尤其是在较低的温度范围和大气压下。在氧化步骤中,无论是在等温还是非等温操作中,适度过量的水都有利于能量转换,特别是在H2O:Mo=4时。在整个STC循环中,最大非等温和等温效率分别能达到0.417和0.391。另外,在Tred=1200 K和Toxi=400 K时,第二循环的预测效率也高达0.454,这表明MoO2能成为甲烷还原制备太阳能燃料的新的潜在候选物质。

Abstract

Inspired by the promising hydrogen production in the solar thermochemical (STC) cycle based on non-stoichiometric oxides and the operation temperature decreasing effect of methane reduction, a high-fuel-selectivity and CH4-introduced solar thermochemical cycle based on MoO2/Mo is studied. By performing HSC simulations, the energy upgradation and energy conversion potential under isothermal and non-isothermal operating conditions are compared. In the reduction step, MoO2: CH4 = 2 and 1020 K<Tred<1600 K are found to be most favorable for syngas selectivity and methane conversion. Compared to the STC cycle without CH4, the introduction of methane yields a much higher hydrogen production, especially at the lower temperature range and atmospheric pressure. In the oxidation step, a moderately excessive water is beneficial for energy conversion whether in isothermal or non-isothermal operations, especially at H2O: Mo= 4. In the whole STC cycle, the maximum non-isothermal and isothermal efficiency can reach 0.417 and 0.391 respectively. In addition, the predicted efficiency of the second cycle is also as high as 0.454 at Tred = 1200 K and Toxi = 400 K, indicating that MoO2 could be a new and potential candidate for obtaining solar fuel by methane reduction.

Key wordsMoO2/Mo based on solar thermochemical cycle    methanothermal reduction    isothermal and non-isothermal operation    syngas and hydrogen production    thermodynamic analysis
收稿日期: 2019-05-14      出版日期: 2020-03-16
通讯作者: FU Mingkai,LU Yuanwei     E-mail: fumingkai@mail.iee.ac.cn;luyuanwei@bjut.edu.cn
Corresponding Author(s): Mingkai FU,Yuanwei LU   
 引用本文:   
JIN Jiahui, WANG Lei, FU Mingkai, LI Xin, LU Yuanwei. 基于MoO2/Mo甲烷还原的太阳能热化学循环制氢热力学评估[J]. Frontiers in Energy, 2020, 14(1): 71-80.
Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction. Front. Energy, 2020, 14(1): 71-80.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0652-9
https://academic.hep.com.cn/fie/CN/Y2020/V14/I1/71
Fig.1  
Fig.2  
Parameter Definition Unit
C0 Mean flux concentration ratio suns
I Normal beam solar insolation W/m2
σ Stefan- Boltzmann constant, 5.67 × 108 W/(m2·K4)
T0 Ambient temperature K
Tred Reduction step temperature K
Toxi Oxidation step temperature K
Qreactor Received energy of solar reactor kJ
neq Equilibrium amount of substance mol
ni Number of moles of substance mol
hsolar-to-fuel Solar-to-fuel efficiency
ΔfH Standard molar enthalpy of formation kJ/mol
ΔH Enthalpy change kJ/mol
CP Specific heat capacity kJ/(mol·K)
Si Production selectivity of i
HHV Higher heating value kJ/mol
χCH4 Conversion ratio of CH4
Rred CH4:MoO2 ratio at the reduction step
Roxi H2O:Mo ratio at the oxidation step
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 W C Chueh, C Falter, M Abbott, D Scipio, P Furler, S M Haile, A Steinfeld. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science, 2010, 330(6012): 1797–1801
https://doi.org/10.1126/science.1197834
2 W C Chueh, S M Haile. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philosophical Transactions: Mathematical. Physical and Engineering Sciences, 1923, 2010(368): 3269–3294
3 N P Siegel, J E Miller, I Ermanoski, R B Diver, E B Stechel. Factors affecting the efficiency of solar driven metal oxide thermochemical cycles. Industrial & Engineering Chemistry Research, 2013, 52(9): 3276–3286
https://doi.org/10.1021/ie400193q
4 P Charvin, S Abanades, E Beche, F Lemont, G Flamant. Hydrogen production from mixed cerium oxides via three-step water-splitting cycles. Solid State Ionics, 2009, 180(14–16): 1003–1010
https://doi.org/10.1016/j.ssi.2009.03.015
5 R J Carrillo, J R Scheffe. Advances and trends in redox materials for solar thermochemical fuel production. Solar Energy, 2017, 156: 3–20
https://doi.org/10.1016/j.solener.2017.05.032
6 M Ezbiri, M Takacs, D Theiler, R Michalsky, A Steinfeld. Tunable thermodynamic activity of LaxSr1−xMnyAl1−yO3−d (0≤x≤1, 0≤y≤1) perovskites for solar thermochemical fuel synthesis. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(8): 4172–4182
https://doi.org/10.1039/C6TA06644E
7 J R Scheffe, A Steinfeld. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Materials Today, 2014, 17(7): 341–348
https://doi.org/10.1016/j.mattod.2014.04.025
8 D Weibel, Z R Jovanovic, E Gálvez, A Steinfeld. Mechanism of Zn particle oxidation by H2O and CO2 in the presence of ZnO. Chemistry of Materials, 2014, 26(22): 6486–6495
https://doi.org/10.1021/cm503064f
9 S Ackermann, J R Scheffe, A Steinfeld. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. Journal of Physical Chemistry C, 2014, 118(10): 5216–5225
https://doi.org/10.1021/jp500755t
10 M Takacs, J R Scheffe, A Steinfeld. Oxygen nonstoichiometry and thermodynamic characterization of Zr doped ceria in the 1573–1773 K temperature range. Physical Chemistry Chemical Physics, 2015, 17(12): 7813–7822
https://doi.org/10.1039/C4CP04916K
11 D Yadav, R Banerjee. A review of solar thermochemical processes. Renewable & Sustainable Energy Reviews, 2016, 54: 497–532
https://doi.org/10.1016/j.rser.2015.10.026
12 A Demont, S Abanades. Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides. Journal of Physical Chemistry A, 2015, 3(7): 3536–3546
13 J R Scheffe, D Weibel, A Steinfeld. Lanthanum-strontium-manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy & Fuels, 2013, 27(8): 4250–4257
https://doi.org/10.1021/ef301923h
14 A H Bork, M Kubicek, M Struzik, J L M Rupp. Perovskite La0.6Sr0.4Cr1−xCoxO3−d solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. Journal of Physical Chemistry A, 2015, 3(30): 15546–15557
https://doi.org/10.1039/C5TA02519B
15 C K Yang, Y Yamazaki, A Aydin, S M Haile. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(33): 13612–13623
https://doi.org/10.1039/C4TA02694B
16 M Roeb, M Neises, N Monnerie, F Call, H Simon, C Sattler, M Schmücker, R Pitz-Paal. Materials-related aspects of thermochemical water and carbon dioxide splitting: a review. Materials (Basel), 2012, 5(11): 2015–2054
https://doi.org/10.3390/ma5112015
17 A Demont, S Abanades. High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2. RSC Advances, 2014, 4(97): 54885–54891
https://doi.org/10.1039/C4RA10578H
18 T Kodama, T Shimizu, T Satoh, M Nakata, K I Shimizu. Stepwise production of CO-RICH syngas and hydrogen via solar methane reforming by using a Ni(II)-ferrite redox system. Solar Energy, 2002, 73(5): 363–374
https://doi.org/10.1016/S0038-092X(02)00112-3
19 P T Krenzke, J H Davidson. Thermodynamic analysis of syngas production via the solar thermochemical cerium oxide redox cycle with methane-driven reduction. Energy & Fuels, 2014, 28(6): 4088–4095
https://doi.org/10.1021/ef500610n
20 S Abanades, M Chambon. CO2 dissociation and upgrading from two-step solar thermochemical processes based on ZnO/Zn and SnO2/SnO redox pairs. Energy & Fuels, 2010, 24(12): 6667–6674
https://doi.org/10.1021/ef101092u
21 D A Marxer, P Furler, J R Scheffe, H Geerlings, C Falter, V Batteiger, A Sizmann, A Steinfeld. Demonstration of the entire production chain to renewable kerosene via solar thermochemical splitting of H2O and CO2. Energy & Fuels, 2015, 29(5): 3241–3250
https://doi.org/10.1021/acs.energyfuels.5b00351
22 Y Hao, C K Yang, S M Haile. High-temperature isothermal chemical cycling for solar-driven fuel production. Physical Chemistry Chemical Physics, 2013, 15(40): 17084–17092
https://doi.org/10.1039/c3cp53270d
23 A Roine. Outokumpu HSC Chemistry for Windows, Version 7.1. Pori, Finland: Outokumpu Research Oy, 2013
24 R R Bhosale, A Kumar, F Almomani, U Ghosh, D Dardor, Z Bouabidi, M Ali, S Yousefi, A AlNouss, M S Anis, M H Usmani, M H Ali, R S Azzam, A Banu. Solar co-production of samarium and syngas via methanothermal reduction of samarium sesquioxide. Energy Conversion and Management, 2016, 112: 413–422
https://doi.org/10.1016/j.enconman.2016.01.032
25 A Steinfeld, C Larson, R Palumbo, M Foley III. Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat. Energy, 1996, 21(3): 205–222
https://doi.org/10.1016/0360-5442(95)00125-5
26 P T Krenzke, J R Fosheim, J H Davidson. Solar fuels via chemical-looping reforming. Solar Energy, 2017, 156: 48–72
https://doi.org/10.1016/j.solener.2017.05.095
27 R R Bhosale, A Kumar, P Sutar. Thermodynamic analysis of solar driven SnO2 /SnO based thermochemical water splitting cycle. Energy Conversion and Management, 2017, 135: 226–235
https://doi.org/10.1016/j.enconman.2016.12.067
28 D Marxer, P Furler, M Takacs, A Steinfeld. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy & Environmental Science, 2017, 10(5): 1142–1149
https://doi.org/10.1039/C6EE03776C
29 R Bader, L J Venstrom, J H Davidson, W Lipiński. Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production. Energy & Fuels, 2013, 27(9): 5533–5544
https://doi.org/10.1021/ef400132d
30 I Ermanoski, J E Miller, M D Allendorf. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting. Physical Chemistry Chemical Physics, 2014, 16(18): 8418–8427
https://doi.org/10.1039/C4CP00978A
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed