Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (3): 443-451   https://doi.org/10.1007/s11708-020-0683-2
  研究论文 本期目录
用氟表面活性剂高效促进甲烷水合物的合成并消除泡沫
曹泉1(), 徐东彦2, 徐环斐3, 罗生军1(), 郭荣波4()
1. 山东生物燃气生产与利用工业工程实验室,中国科学院青岛生物能源与过程研究所生物燃料重点实验室,中国山东青岛266101
2. 中国科学院洁净能源创新研究院,中国大连116023
3. 青岛科技大学工学院,中国青岛266042
4. 青岛科技大学化工学院,中国青岛266042
Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated surfactants
Quan CAO1(), Dongyan XU2, Huanfei XU3, Shengjun LUO1(), Rongbo GUO4()
1. Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels of Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
2. Faculty of Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
3. Faculty of Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
4. Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels of Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Dalian National Laboratory for Clean Energy, Dalian 116023, China; Faculty of Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
 全文: PDF(1096 KB)   HTML
摘要:

甲烷水合物法是储存和运输甲烷的一种有效的方法。在所有的水合物促进剂中,均相的表面活性剂水溶液,特别是十二烷基硫酸钠(SDS)比非均相的颗粒效果更好,它的反应速率更快,储气倍数更高,更加稳定。但是对SDS溶液来讲,水合物分解过程产生的泡沫很难避免。本文考察了五种氟表面活性剂,全氟丁基磺酸钾(PBS)、全氟己基磺酸钾(PHS)、全氟辛基磺酸钾(POS)、全氟辛基磺酸铵(AOS)、全氟辛基磺酸四乙基胺(TOS)促进水合物生成的能力。实验发现,PBS 和PHS都能在30分钟内达到150 (V/V)的储气倍数,这要优于SDS。同时考察了阳离子和碳链长度的影响。PBS、PHS和POS在水合物分解过程中没有产生泡沫,因此在水合物放大生产中具有很好的应用前景。

Abstract

Methane hydrate preparation is an effective method to store and transport methane. In promoters to facilitate methane hydrate formation, homogeneous surfactant solutions, sodium dodecyl sulfate (SDS) in particular, are more favorable than heterogeneous particles, thanks to their faster reaction rate, more storage capacity, and higher stability. Foaming, however, could not be avoided during hydrate dissociation with the presence of SDS. This paper investigated the ability of five fluorinated surfactants: potassium perfluorobutane sulfonate (PBS), potassium perfluorohexyl sulfonate (PHS), potassium perfluorooctane sulfonate (POS), ammonium perfluorooctane sulfonate (AOS), and tetraethylammonium perfluorooctyl sulfonate (TOS) to promote methane hydrate formation. It was found that both PBS and PHS achieve a storage capacity of 150 (V/V, the volume of methane that can be stored by one volume of water) within 30 min, more than that of SDS. Cationic ions and the carbon chain length were then discussed on their effects during the formation. It was concluded that PBS, PHS, and POS produced no foam during hydrate dissociation, making them promising promoters in large-scale application.

Key wordsmethane hydrate    fluorinated surfactants    homogeneous promoter    foam elimination    stability
收稿日期: 2019-11-14      出版日期: 2020-09-14
通讯作者: 曹泉,罗生军,郭荣波     E-mail: caoquan@qibebt.ac.cn (Quan CAO);luosj@qibebt.ac.cn (Shengjun LUO);guorb@qibebt.ac.cn
Corresponding Author(s): Quan CAO,Shengjun LUO,Rongbo GUO   
 引用本文:   
曹泉, 徐东彦, 徐环斐, 罗生军, 郭荣波. 用氟表面活性剂高效促进甲烷水合物的合成并消除泡沫[J]. Frontiers in Energy, 2020, 14(3): 443-451.
Quan CAO, Dongyan XU, Huanfei XU, Shengjun LUO, Rongbo GUO. Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated surfactants. Front. Energy, 2020, 14(3): 443-451.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0683-2
https://academic.hep.com.cn/fie/CN/Y2020/V14/I3/443
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Surfactant Concentration/(m·mol·L1) Viscosity/(mPa·S)
PBS 40 2.9
PHS 10 3.1
POS 4 2.8
AOS 1 3.4
AOS 4 6.7
AOS 7 8.2
TOS 1 3.6
TOS 4 7.1
TOS 7 8.7
Tab.1  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 M J Yang, J N Zheng, Y Gao, Z Ma, X Lv, Y Song. Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization. Applied Energy, 2019, 243: 266–273
https://doi.org/10.1016/j.apenergy.2019.03.160
2 J Zhang, C Yip, C Xia, Y Liang. Evaluation of methane release from coals from the San Juan basin and Powder River basin. Fuel, 2019, 244: 388–394
https://doi.org/10.1016/j.fuel.2019.02.020
3 R Rathi, M Lavania, N Singh, P M Sarma, P Kishore, P Hajra, B Lal. Evaluating indigenous diversity and its potential for microbial methane generation from thermogenic coal bed methane reservoir. Fuel, 2019, 250: 362–372
https://doi.org/10.1016/j.fuel.2019.03.125
4 A Wang, D Austin, H Song. Investigations of thermochemical upgrading of biomass and its model compounds: opportunities for methane utilization. Fuel, 2019, 246: 443–453
https://doi.org/10.1016/j.fuel.2019.03.015
5 H Guo, Y Cheng, Z Huang, M A Urynowicz, W Liang, Z Han, J Liu. Factors affecting co-degradation of coal and straw to enhance biogenic coalbed methane. Fuel, 2019, 244: 240–246
https://doi.org/10.1016/j.fuel.2019.02.011
6 C Lay, T Vo, P Y Lin, P M Abdul, C M Liu, C Y Lin. Anaerobic hydrogen and methane production from low-strength beverage wastewater. International Journal of Hydrogen Energy, 2019, 44(28): 14351–14361
https://doi.org/10.1016/j.ijhydene.2019.03.165
7 E Andres-Garcia, A Dikhtiarenko, F Fauth, J Silvestre-Albero, E V Ramos-Fernández, J Gascon, A Corma, F Kapteijn. Methane hydrates: nucleation in microporous materials. Chemical Engineering Journal, 2019, 360: 569–576
https://doi.org/10.1016/j.cej.2018.11.216
8 B C Gbaruko, J C Igwe, P N Gbaruko, R C Nwokeoma. Gas hydrates and clathrates: flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. Journal of Petroleum Science Engineering, 2007, 56(1–3): 192–198
https://doi.org/10.1016/j.petrol.2005.12.011
9 R Ohmura, S Takeya, T Uchida, T Ebinuma. Clathrate hydrate formed with methane and 2-propanol: confirmation of structure II hydrate formation. Industrial & Engineering Chemistry Research, 2004, 43(16): 4964–4966
https://doi.org/10.1021/ie0498089
10 Y Jin, M Kida, Y Konno, J Nagao. Clathrate hydrate equilibrium in methane-water systems with the addition of monosaccharide and sugar alcohol. Journal of Chemical & Engineering Data, 2017, 62(1): 440–444
https://doi.org/10.1021/acs.jced.6b00756
11 K Imasato, H Tokutomi, R Ohmura. Crystal growth behavior of methane hydrate in the presence of liquid hydrocarbon. Crystal Growth & Design, 2015, 15(1): 428–433
https://doi.org/10.1021/cg501500w
12 R Susilo, S Alavi, J Ripmeester, P Englezos. Tuning methane content in gas hydrates via thermodynamic modeling and molecular dynamics simulation. Fluid Phase Equilibria, 2008, 263(1): 6–17
https://doi.org/10.1016/j.fluid.2007.09.015
13 H Mimachi, M Takahashi, S Takeya, Y Gotoh, A Yoneyama, K Hyodo, T Takeda, T Murayama. Effect of long-term storage and thermal history on the gas content of natural gas hydrate pellets under ambient pressure. Energy & Fuels, 2015, 29(8): 4827–4834
https://doi.org/10.1021/acs.energyfuels.5b00832
14 S Takeya, A Yoneyama, K Ueda, K Hyodo, T Takeda, H Mimachi, M Takahashi, T Iwasaki, K Sano, H Yamawaki, Y Gotoh. Nondestructive imaging of anomalously preserved methane clathrate hydrate by phase contrast X-ray imaging. Journal of Physical Chemistry C, 2011, 115(32): 16193–16199
https://doi.org/10.1021/jp202569r
15 P Gupta, S Sakthivel, J S Sangwai. Effect of aromatic/aliphatic based ionic liquids on the phase behavior of methane hydrates: experiments and modeling. Journal of Chemical Thermodynamics, 2018, 117: 9–20
https://doi.org/10.1016/j.jct.2017.08.037
16 S Jadav, N Sakthipriya, M Doble, J S Sangwai. Effect of biosurfactants produced by Bacillus subtilis and Pseudomonas aeruginosa on the formation kinetics of methane hydrates. Journal of Natural Gas Science and Engineering, 2017, 43: 156–166
https://doi.org/10.1016/j.jngse.2017.03.032
17 H Ganji, M Manteghian, K Sadaghiani Zadeh, M R Omidkhah, H Rahimi Mofrad. Effect of different surfactants on methane hydrate formation rate, stability and storage capacity. Fuel, 2007, 86(3): 434–441
https://doi.org/10.1016/j.fuel.2006.07.032
18 A Erfani, E Fallahjokandan, F Varaminian. Effects of non-ionic surfactants on formation kinetics of structure H hydrate regarding transportation and storage of natural gas. Journal of Natural Gas Science and Engineering, 2017, 37: 397–408
https://doi.org/10.1016/j.jngse.2016.11.058
19 J Verrett, P Servio. Evaluating surfactants and their effect on methane mole fraction during hydrate growth. Industrial & Engineering Chemistry Research, 2012, 51(40): 13144–13149
https://doi.org/10.1021/ie301931m
20 M Aliabadi, A Rasoolzadeh, F Esmaeilzadeh, A M Alamdari. Experimental study of using CuO nanoparticles as a methane hydrate promoter. Journal of Natural Gas Science and Engineering, 2015, 27: 1518–1522
https://doi.org/10.1016/j.jngse.2015.10.017
21 N Choudhary, V R Hande, S Roy, S Chakrabarty, R Kumar. Effect of sodium dodecyl sulfate surfactant on methane hydrate formation: a molecular dynamics study. Journal of Physical Chemistry B, 2018, 122(25): 6536–6542
https://doi.org/10.1021/acs.jpcb.8b02285
22 A Siangsai, K Inkong, S Kulprathipanja, B Kitiyanan, P Rangsunvigit. Roles of sodium dodecyl sulfate on tetrahydrofuran-assisted methane hydrate formation. Journal of Oleo Science, 2018, 67(6): 707–717
https://doi.org/10.5650/jos.ess17275
23 K Watanabe, S Niwa, Y H Mori. Surface tensions of aqueous solutions of sodium alkyl sulfates in contact with methane under hydrate-forming conditions. Journal of Chemical & Engineering Data, 2005, 50(5): 1672–1676
https://doi.org/10.1021/je050139v
24 G Bhattacharjee, V Barmecha, O S Kushwaha, R Kumar. Kinetic promotion of methane hydrate formation by combining anionic and silicone surfactants: scalability promise of methane storage due to prevention of foam formation. Journal of Chemical Thermodynamics, 2018, 117: 248–255
https://doi.org/10.1016/j.jct.2017.09.029
25 G Pandey, G Bhattacharjee, H P Veluswamy, R Kumar, J S Sangwai, P Linga. Alleviation of foam formation in a surfactant driven gas hydrate system: insights via a detailed morphological study. ACS Applied Energy Materials, 2018, 1: 6899–6911
https://doi.org/10.1021/acsaem.8b01307
26 Y Song, F Wang, G Guo, S J Luo, R B Guo. Amphiphilic-polymer-coated carbon nanotubes as promoters for methane hydrate formation. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9271–9278
https://doi.org/10.1021/acssuschemeng.7b02239
27 F Wang, G Guo, S J Luo, R B Guo. Grafting of nano-Ag particles on −SO3−-coated nanopolymers for promoting methane hydrate formation. Journal of Materials Chemistry, 2017, 5(35): 18486–18493
https://doi.org/10.1039/C7TA02830J
28 F Wang, G Liu, H L Meng, G Guo, S J Luo, R B Guo. Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants as promoters. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2107–2113
https://doi.org/10.1021/acssuschemeng.5b01557
29 F Wang, H Meng, G Guo, S J Luo, R B Guo. Methane hydrate formation promoted by −SO3−-coated graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6597–6604
https://doi.org/10.1021/acssuschemeng.7b00846
30 F Wang, G Guo, S J Luo, R B Guo. Preparation of −SO3−-coated nanopromoters for methane hydrate formation: effects of the existence pattern of −SO3− groups on the promotion efficiency. Journal of Materials Chemistry, 2017, 5(6): 2640–2648
https://doi.org/10.1039/C6TA08839B
31 Y Song, F Wang, G Liu, S Luo, R Guo. Promotion effect of carbon nanotubes-doped SDS on methane hydrate formation. Energy & Fuels, 2017, 31(2): 1850–1857
https://doi.org/10.1021/acs.energyfuels.6b02418
32 F Wang, Y Song, G Q Liu, G Guo, S J Luo, R B Guo. Rapid methane hydrate formation promoted by Ag & SDS-coated nanospheres for energy storage. Applied Energy, 2018, 213: 227–234
https://doi.org/10.1016/j.apenergy.2018.01.021
33 F Wang, Z Jia, S J Luo, S F Fu, L Wang, X S Shi, C S Wang, R B Guo. Effects of different anionic surfactants on methane hydrate formation. Chemical Engineering Science, 2015, 137: 896–903
https://doi.org/10.1016/j.ces.2015.07.021
34 R R Prajapati, S S Bhagwat. Effect of foam boosters on the micellization and adsorption of sodium dodecyl sulfate. Journal of Chemical & Engineering Data, 2012, 57(12): 3644–3650
https://doi.org/10.1021/je3008155
35 Z Hu, W Verheijen, J Hofkens, A M Jonas, J F Gohy. Formation of vesicles in block copolymer-fluorinated surfactant complexes. Langmuir, 2007, 23(1): 116–122
https://doi.org/10.1021/la061532h
36 A Jackson, P Li, C C Dong, R K Thomas, J Penfold. Structure of partially fluorinated surfactant monolayers at the air-water interface. Langmuir, 2009, 25(7): 3957–3965
https://doi.org/10.1021/la802928f
37 F Wang, G Guo, G Q Liu, S J Luo, R B Guo. Effects of surfactant micelles and surfactant-coated nanospheres on methane hydrate growth pattern. Chemical Engineering Science, 2016, 144(144): 108–115
https://doi.org/10.1016/j.ces.2016.01.022
38 A Shiloach, D Blankschtein. Prediction of critical micelle concentrations of nonideal ternary surfactant mixtures. Langmuir, 1998, 14(15): 4105–4114
https://doi.org/10.1021/la980153o
39 J B Evans, D F Evans. A comparison of surfactant counterion effects in water and formamide. Journal of Physical Chemistry, 1987, 91(14): 3828–3829
https://doi.org/10.1021/j100298a020
40 H Tabuteau, L Ramos, K Nakaya-Yaegashi, M Imai, C Ligoure. Nonlinear rheology of surfactant wormlike micelles bridged by telechelic polymers. Langmuir, 2009, 25(4): 2467–2472
https://doi.org/10.1021/la803304z
41 R Petkova, S Tcholakova, N D Denkov. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge. Langmuir, 2012, 28(11): 4996–5009
https://doi.org/10.1021/la3003096
[1] FEP-20028-OF-QC_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed